The canine virtual ventricular wall: A platform for dissecting pharmacological effects on propagation and arrhythmogenesis

Alan P. Benson, Oleg V. Aslanidi, Henggui Zhang, Arun V. Holden

    Research output: Contribution to journalArticlepeer-review

    Abstract

    We have constructed computational models of canine ventricular cells and tissues, ultimately combining detailed tissue architecture and heterogeneous transmural electrophysiology. The heterogeneity is introduced by modifying the Hund-Rudy canine cell model in order to reproduce experimentally reported electrophysiological properties of endocardial, midmyocardial (M) and epicardial cells. These models are validated against experimental data for individual ionic current and action potential characteristics, and their rate dependencies. 1D and 3D heterogeneous virtual tissues are constructed, with detailed tissue architecture (anisotropy and orthotropy, due to fibre orientation and sheet structure) of the left ventricular wall wedge extracted from a diffusion tensor imaging data set. The models are used to study the effects of tissue heterogeneity and class III drugs on transmural propagation and tissue vulnerability to re-entry. We have determined relationships between the transmural dispersion of action potential duration (APD) and the vulnerable window in the 1D virtual ventricular wall, and demonstrated how changes in the transmural heterogeneity, and hence tissue vulnerability, can lead to generation of re-entry in the 3D ventricular wedge. Two class III drugs with opposite qualitative effects on transmural APD heterogeneity are considered: d-sotalol that increases transmural APD dispersion, and amiodarone that decreases it. Simulations with the 1D virtual ventricular wall show that under d-sotalol conditions the vulnerable window is substantially wider compared to amiodarone conditions, primarily in the epicardial region where unidirectional conduction block persists until the adjacent M cells are fully repolarised. Further simulations with the 3D ventricular wedge have shown that ectopic stimulation of the epicardial region results in generation of sustained re-entry under d-sotalol conditions, but not under amiodarone conditions or in control. Again, APD increase in M cells was identified as the major contributor to tissue vulnerability-re-entry was initiated primarily due to ectopic excitation propagating around the unidirectional conduction block in the M cell region. This suggests an electrophysiological mechanism for the anti- and proarrhythmic effects of the class III drugs: the relative safety of amiodarone in comparison to d-sotalol can be explained by relatively low transmural APD dispersion, and hence, a narrow vulnerable window and low probability of re-entry in the tissue. © 2007 Elsevier Ltd. All rights reserved.
    Original languageEnglish
    Pages (from-to)187-208
    Number of pages21
    JournalProgress in biophysics and molecular biology
    Volume96
    Issue number1-3
    DOIs
    Publication statusPublished - Jan 2008

    Keywords

    • Class III antiarrhythmic drugs
    • Computational modelling
    • Re-entry
    • Transmural heterogeneity
    • Ventricular wall

    Fingerprint

    Dive into the research topics of 'The canine virtual ventricular wall: A platform for dissecting pharmacological effects on propagation and arrhythmogenesis'. Together they form a unique fingerprint.

    Cite this