The Complexity of Hybrid Logics over Restricted Classes of Frames

Thomas Schneider

    Research output: ThesisDoctoral Thesis

    28 Downloads (Pure)

    Abstract

    Thomas Schneider The Complexity of Hybrid Logics over Restricted Frame Classes Dissertation, Jena, 2007 This dissertation examines the computational complexity of decision problems for a collection of hybrid logics over different classes of frames. Hybrid logics are extensions of modal logic that allow, in addition to the usual perspective on states and their successors in relational structures, for naming and accessing states of a structure explicitly. These features are very desirable in many applications, for example, in the temporal or epistemic context. We will systematically examine decidability and the computational complexity of satisfiability and the model-checking problem for a systematic collection of hybrid languages with respect to temporally and epistemically relevant classes of structures. This includes establishing a hierarchy of all relevant languages over these classes, arranging results from the literature into this hierarchy, and contributing our own results. In particular, we prove the following main results, involving a wide range of techniques for establishing complexity bounds of logics. * The model-checking problem for all binder languages remains PSPACE-complete over restricted classes of structures. (Chapter 4) * The satisfiability problem for hybrid until/since languages over transitive structures is EXPTIME-hard and in 2EXPTIME. (Section 5.4) * The satisfiability problem for almost all extensions of the smallest binder language over transitive structures is undecidable. (Section 5.4) * The satisfiability problem for hybrid until/since languages over transitive trees is EXPTIME-complete. (Section 5.5) * The satisfiability problem for all binder languages over transitive trees is nonelementarily decidable. (Section 5.5) * The satisfiability problem for binder-free hybrid languages over ER structures is NP-complete. (Section 5.8) * The satisfiability problem for the language with all operators over ER structures is N2EXPTIME-complete. (Section 5.8) * The satisfiability problem for all remaining hybrid languages over ER structures is NEXPTIME-complete. (Section 5.8) * The satisfiability problem for the bi-modal version of the smallest binder language over many classes of structures, including many restricted ones, is undecidable. (Chapter 6) This dissertation contains material presented at, and published in the proceedings of, the workshops "Methods for Modalities" (2005, accepted for a special issue of the Journal of Logic, Language and Information) and "Hybrid Logic" (2006 and 2007).
    Original languageEnglish
    Awarding Institution
    • Friedrich-Schiller-Universitat Jena
    Place of PublicationJena
    Publisher
    Publication statusPublished - 16 Jul 2007

    Fingerprint

    Dive into the research topics of 'The Complexity of Hybrid Logics over Restricted Classes of Frames'. Together they form a unique fingerprint.

    Cite this