TY - JOUR
T1 - The development of composite circulating biomarker models for use in anticancer drug clinical development
AU - Renehan, Andrew
AU - Lancashire, Lee J.
AU - Roberts, Darren L.
AU - Dive, Caroline
AU - Renehan, Andrew G.
N1 - Lancashire, Lee J Roberts, Darren L Dive, Caroline Renehan, Andrew G Cancer Research UK/United Kingdom Research Support, Non-U.S. Gov't United States International journal of cancer. Journal international du cancer Int J Cancer. 2011 Apr 15;128(8):1843-51. doi: 10.1002/ijc.25513.
PY - 2011/4/15
Y1 - 2011/4/15
N2 - The development of informative composite circulating biomarkers predicting cancer presence or therapy response is clinically attractive but optimal approaches to modeling are as yet unclear. This study investigated multidimensional relationships within an example panel of serum insulin-like growth factor (IGF) peptides using logistic regression (LR), fractional polynomial (FP), regression, artificial neural networks (ANNs) and support vector machines (SVMs) to derive predictive models for colorectal cancer (CRC). Two phase 2 biomarker validation analyses were performed: controls were ambulant adults (n = 722); cases were: (i) CRC patients (n = 100) and (ii) patients with acromegaly (n = 52), the latter as "positive" discriminators. Serum IGF-I, IGF-II, IGF binding protein (IGFBP)-2 and -3 were measured. Discriminatory characteristics were compared within and between models. For the LR, FP and ANN models, and to a lesser extent SVMs, the addition of covariates at several steps improved discrimination characteristics. The optimum biomarker combination discriminating CRC vs. controls was achieved using ANN models [sensitivity, 94%; specificity, 90%; accuracy, 0.975 (95% CIs: 0.948 1.000)]. ANN modeling significantly outperformed LR, FP and SVM in terms of discrimination (p <0.0001) and calibration. The acromegaly analysis demonstrated expected high performance characteristics in the ANN model [accuracy, 0.993 (95% CIs: 0.977, 1.000)]. Curved decision surfaces generated from the ANNs revealed the potential clinical utility. This example demonstrated improved discriminatory characteristics within the composite biomarker ANN model and a final model that outperformed the three other models. This modeling approach forms the basis to evaluate composite biomarkers as pharmacological and predictive biomarkers in future clinical trials. © 2010 UICC.
AB - The development of informative composite circulating biomarkers predicting cancer presence or therapy response is clinically attractive but optimal approaches to modeling are as yet unclear. This study investigated multidimensional relationships within an example panel of serum insulin-like growth factor (IGF) peptides using logistic regression (LR), fractional polynomial (FP), regression, artificial neural networks (ANNs) and support vector machines (SVMs) to derive predictive models for colorectal cancer (CRC). Two phase 2 biomarker validation analyses were performed: controls were ambulant adults (n = 722); cases were: (i) CRC patients (n = 100) and (ii) patients with acromegaly (n = 52), the latter as "positive" discriminators. Serum IGF-I, IGF-II, IGF binding protein (IGFBP)-2 and -3 were measured. Discriminatory characteristics were compared within and between models. For the LR, FP and ANN models, and to a lesser extent SVMs, the addition of covariates at several steps improved discrimination characteristics. The optimum biomarker combination discriminating CRC vs. controls was achieved using ANN models [sensitivity, 94%; specificity, 90%; accuracy, 0.975 (95% CIs: 0.948 1.000)]. ANN modeling significantly outperformed LR, FP and SVM in terms of discrimination (p <0.0001) and calibration. The acromegaly analysis demonstrated expected high performance characteristics in the ANN model [accuracy, 0.993 (95% CIs: 0.977, 1.000)]. Curved decision surfaces generated from the ANNs revealed the potential clinical utility. This example demonstrated improved discriminatory characteristics within the composite biomarker ANN model and a final model that outperformed the three other models. This modeling approach forms the basis to evaluate composite biomarkers as pharmacological and predictive biomarkers in future clinical trials. © 2010 UICC.
KW - artificial neural network
KW - biomarkers
KW - insulin-like growth factors
KW - receiver operator characteristics
KW - support vector machine
U2 - 10.1002/ijc.25513
DO - 10.1002/ijc.25513
M3 - Article
SN - 0020-7136
VL - 128
SP - 1843
EP - 1851
JO - International Journal of Cancer
JF - International Journal of Cancer
IS - 8
ER -