TY - JOUR
T1 - The effect of substrate pretreatment on PVD TiN hard coating performance
AU - El-Shazly, MH
AU - El-Sherbiny, M
AU - Matthews, A
AU - Leyland, A
PY - 1999
Y1 - 1999
N2 - This work comprises a study of the deposition and characterization of TiN coatings of different thicknesses on AISI M2 substrates heat-treated to different hardnesses. The effect of both substrate hardness and coating thickness on coating tribological performance was evaluated. The characterization tests included surface roughness measurement, coating thickness, micro-hardness, scratch adhesion, pin on disc, impact and corrosion tests. New findings on the impact wear behavior of TiN tempered M2 substrates were highlighted. For example, using a thin coating and tempering the substrate at 650°C to slightly reduce the substrate hardness gave improved impact wear resistance. A maximum surface composite hardness value was obtained at ‘full’ substrate hardening (i.e. non-tempered) and the maximum TiN coating thickness as expected. The maximum critical load (79.2 N), in scratch adhesion tests was obtained from the fully hardened substrate with minimum TiN coating thickness. The results from corrosion tests show that tempering has an adverse effect on corrosion resistance.
AB - This work comprises a study of the deposition and characterization of TiN coatings of different thicknesses on AISI M2 substrates heat-treated to different hardnesses. The effect of both substrate hardness and coating thickness on coating tribological performance was evaluated. The characterization tests included surface roughness measurement, coating thickness, micro-hardness, scratch adhesion, pin on disc, impact and corrosion tests. New findings on the impact wear behavior of TiN tempered M2 substrates were highlighted. For example, using a thin coating and tempering the substrate at 650°C to slightly reduce the substrate hardness gave improved impact wear resistance. A maximum surface composite hardness value was obtained at ‘full’ substrate hardening (i.e. non-tempered) and the maximum TiN coating thickness as expected. The maximum critical load (79.2 N), in scratch adhesion tests was obtained from the fully hardened substrate with minimum TiN coating thickness. The results from corrosion tests show that tempering has an adverse effect on corrosion resistance.
UR - http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000079321100008&KeyUID=WOS:000079321100008
U2 - 10.1080/10426919908914822
DO - 10.1080/10426919908914822
M3 - Article
SN - 1042-6914
VL - 14
SP - 257
EP - 269
JO - Materials and Manufacturing Processes
JF - Materials and Manufacturing Processes
IS - 2
ER -