TY - JOUR
T1 - The effects of elevated potassium, acidosis, reduced oxygen levels, and temperature on the functional properties of isolated myocardium from three elasmobranch fishes: clearnose skate (Rostroraja eglanteria), smooth dogfish (Mustelus canis), and sandbar shark (Carcharhinus plumbeus)
AU - Schwieterman, Gail D.
AU - Winchester, Maggie M.
AU - Shiels, Holly A.
AU - Bushnell, Peter G.
AU - Bernal, Diego
AU - Marshall, Heather M.
AU - Brill, Richard W.
N1 - Funding Information:
Support for G.S. was provided by National Science Foundation under Grant DGE‐1444317. Support for M.W. and D.B was provided by National Science Foundation under Grant IOS-1354593.
Funding Information:
We would like to thank two anonymous reviewers for their constructive comments on an earlier version of this article, T. Deemer for assistance in obtaining smooth dogfish, and D. Crear, G. Fay, and M. Winton for their assistance with statistical analysis. We would also like to thank D. Lavoie, R. Steffan, A. Sergio, T. Bigelow and the entire staff at the Virginia Institute of Marine Science Eastern Shore Laboratory for their unwavering logistical support and assistance in collecting specimens. Species silhouettes in Figs. 1 -4 were provided by O. Shipley.
Publisher Copyright:
© 2021, Springer-Verlag GmbH Germany, part of Springer Nature.
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/1/4
Y1 - 2021/1/4
N2 - Elevated plasma potassium levels (hyperkalemia), reduced plasma pH (acidosis), reduced blood oxygen content, and elevated temperatures are associated with species-specific rates of at-vessel and post-release mortality in elasmobranch fishes. The mechanism linking these physiological disturbances to mortality remains undetermined however, and we hypothesize that the proximate cause is reduced myocardial function. We measured changes in the functional properties of isolated ventricular myocardial strips from clearnose skate (Rostroraja eglanteria), smooth dogfish (Mustelus canis), and sandbar shark (Carcharhinus plumbeus) when subjected to the following stressors (both in isolation and in combination): hyperkalemia (7.4 mM K+), acidosis (from 7.9 to 7.1), and reduced oxygen (to 31% O2 saturation) applied at temperatures 5 °C above and below holding temperatures. We selected these species based on phylogenetic distance, diverse routine activity levels, and their tolerance to capture and transport. Stressors had a few significant species-specific detrimental impacts on myocardial function (e.g., a 33–45% decrease in net force under acidosis + low O2). Net force production of myocardial strips from clearnose skate and smooth dogfish approximately doubled following exposure to isoproterenol, demonstrating that these species possess beta-adrenergic receptors and that their stimulation could provide a mechanism for preservation of cardiac function during stress. Our results suggest that disruption of physiological homeostasis associated with capture may fatally impair cardiac function in some elasmobranch species, although research with more severe stressors is needed.
AB - Elevated plasma potassium levels (hyperkalemia), reduced plasma pH (acidosis), reduced blood oxygen content, and elevated temperatures are associated with species-specific rates of at-vessel and post-release mortality in elasmobranch fishes. The mechanism linking these physiological disturbances to mortality remains undetermined however, and we hypothesize that the proximate cause is reduced myocardial function. We measured changes in the functional properties of isolated ventricular myocardial strips from clearnose skate (Rostroraja eglanteria), smooth dogfish (Mustelus canis), and sandbar shark (Carcharhinus plumbeus) when subjected to the following stressors (both in isolation and in combination): hyperkalemia (7.4 mM K+), acidosis (from 7.9 to 7.1), and reduced oxygen (to 31% O2 saturation) applied at temperatures 5 °C above and below holding temperatures. We selected these species based on phylogenetic distance, diverse routine activity levels, and their tolerance to capture and transport. Stressors had a few significant species-specific detrimental impacts on myocardial function (e.g., a 33–45% decrease in net force under acidosis + low O2). Net force production of myocardial strips from clearnose skate and smooth dogfish approximately doubled following exposure to isoproterenol, demonstrating that these species possess beta-adrenergic receptors and that their stimulation could provide a mechanism for preservation of cardiac function during stress. Our results suggest that disruption of physiological homeostasis associated with capture may fatally impair cardiac function in some elasmobranch species, although research with more severe stressors is needed.
U2 - 10.1007/s00360-020-01328-8
DO - 10.1007/s00360-020-01328-8
M3 - Article
VL - 191
SP - 127
EP - 141
JO - Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology
JF - Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology
SN - 0174-1578
IS - 1
ER -