The efficiency of secondary organic aerosol particles acting as ice-nucleating particles under mixed-phase cloud conditions

Wiebke Frey, Dawei Hu, James Dorsey, M. Rami Alfarra, Aki Pajunoja, Annele Virtanen, Paul Connolly, Gordon Mcfiggans

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Secondary organic aerosol (SOA) particles have been found to be efficient ice-nucleating particles under the cold conditions of (tropical) upper-tropospheric cirrus clouds. Whether they also are efficient at initiating freezing under slightly warmer conditions as found in mixed-phase clouds remains undetermined. Here, we study the ice-nucleating ability of photochemically produced SOA particles with the combination of the Manchester Aerosol Chamber and Manchester Ice Cloud Chamber. Three SOA systems were tested resembling biogenic and anthropogenic particles as well as particles of different phase state. These are namely α-pinene, heptadecane, and 1,3,5-trimethylbenzene. After the aerosol particles were formed, they were transferred into the cloud chamber, where subsequent quasi-adiabatic cloud activation experiments were performed. Additionally, the ice-forming abilities of ammonium sulfate and kaolinite were investigated as a reference to test the experimental setup.

    Clouds were formed in the temperature range of −20 to −28.6 °C. Only the reference experiment using dust particles showed evidence of ice nucleation. No ice particles were observed in any other experiment. Thus, we conclude that SOA particles produced under the conditions of the reported experiments are not efficient ice-nucleating particles starting at liquid saturation under mixed-phase cloud conditions.
    Original languageEnglish
    Pages (from-to)9393-9409
    Number of pages16
    JournalAtmospheric Chemistry and Physics
    Volume18
    Issue number13
    Early online date5 Jul 2018
    DOIs
    Publication statusPublished - 2018

    Fingerprint

    Dive into the research topics of 'The efficiency of secondary organic aerosol particles acting as ice-nucleating particles under mixed-phase cloud conditions'. Together they form a unique fingerprint.

    Cite this