TY - JOUR
T1 - The electronic structures of the pyrite-type disulphides (MS2, where M = Mn, Fe, Co, Ni, Cu, Zn) and the bulk properties of pyrite from local density approximation (LDA) band structure calculations
AU - Temmerman, W. M.
AU - Durham, P. J.
AU - Vaughan, D. J.
PY - 1993/9
Y1 - 1993/9
N2 - A local density approximation (LDA) band structure method, the Linear Muffin-Tin Orbital Atomic Sphere Approximation (LMTO-ASA) method has been used to calculate the electronic structures of the pyrite-type disulphides (MS2, where M = Mn, Fe, Co, Ni, Cu, Zn). The total density of states has been calculated for 10 eV above and below the Fermi Level, along with the separate contributions from metal and sulphur and shows that the metal d band occurs above the sulphur p bands in MnS2, FeS2, CoS2 and NiS2, whereas in CuS2, the d band passes through the sulphur p band and in ZnS2, it lies below the sulphur p band. Substantial hybridization of the metal d states with the sulphur states occurs. FeS2 is calculated to be a semiconductor with a direct band gap of 0.64 eV in good agreement with experiment. The calculated local densities of states have been used in turn to calculate X-ray photoelectron spectra and Bremsstrahlung Isochromat spectra for this series of compounds, and these also show reasonable agreement with experimental data. A particular strength of the LMTO-ASA method is the ability to calculate and predict certain bulk properties of solids of interest in mineral physics. This has enabled the first reasonably accurate calculations of the total energy of the valence electrons of the system for pyrite (FeS2), given as - 345.885 rydbergs per unit cell, and the equilibrium unit cell volume which is within 3.3% of that determined experimentally. A theoretical pressure vs. volume curve for pyrite was also calculated along with values for the bulk modulus. However, our calculations predict a bulk modulus of 6.75 Mbar which is too high by a factor of 4.6 due to the simplifying assumption of a uniform scaling of interatomic distances on compression.
AB - A local density approximation (LDA) band structure method, the Linear Muffin-Tin Orbital Atomic Sphere Approximation (LMTO-ASA) method has been used to calculate the electronic structures of the pyrite-type disulphides (MS2, where M = Mn, Fe, Co, Ni, Cu, Zn). The total density of states has been calculated for 10 eV above and below the Fermi Level, along with the separate contributions from metal and sulphur and shows that the metal d band occurs above the sulphur p bands in MnS2, FeS2, CoS2 and NiS2, whereas in CuS2, the d band passes through the sulphur p band and in ZnS2, it lies below the sulphur p band. Substantial hybridization of the metal d states with the sulphur states occurs. FeS2 is calculated to be a semiconductor with a direct band gap of 0.64 eV in good agreement with experiment. The calculated local densities of states have been used in turn to calculate X-ray photoelectron spectra and Bremsstrahlung Isochromat spectra for this series of compounds, and these also show reasonable agreement with experimental data. A particular strength of the LMTO-ASA method is the ability to calculate and predict certain bulk properties of solids of interest in mineral physics. This has enabled the first reasonably accurate calculations of the total energy of the valence electrons of the system for pyrite (FeS2), given as - 345.885 rydbergs per unit cell, and the equilibrium unit cell volume which is within 3.3% of that determined experimentally. A theoretical pressure vs. volume curve for pyrite was also calculated along with values for the bulk modulus. However, our calculations predict a bulk modulus of 6.75 Mbar which is too high by a factor of 4.6 due to the simplifying assumption of a uniform scaling of interatomic distances on compression.
KW - pyrite
KW - bulk modulus
KW - FeS2
KW - local density approximation
KW - band structure calculation
UR - http://www.scopus.com/inward/record.url?scp=0027837480&partnerID=8YFLogxK
U2 - 10.1007/BF00208138
DO - 10.1007/BF00208138
M3 - Article
AN - SCOPUS:0027837480
SN - 0342-1791
VL - 20
SP - 248
EP - 254
JO - Physics and Chemistry of Minerals
JF - Physics and Chemistry of Minerals
IS - 4
ER -