Abstract
Many multiple attribute decision analysis (MADA) problems are characterised by both quantitative and qualitative attributes with various types of uncertainties. Incompleteness (or ignorance) and vagueness (or fuzziness) are among the most common uncertainties in decision analysis. The evidential reasoning (ER) and the interval grade evidential reasoning (IER) approaches have been developed in recent years to support the solution of MADA problems with interval uncertainties and local ignorance in decision analysis. In this paper, the ER approach is enhanced to deal with both interval uncertainty and fuzzy beliefs in assessing alternatives on an attribute. In this newly developed FIER approach, local ignorance and grade fuzziness are modelled under the integrated framework of a distributed fuzzy belief structure, leading to a fuzzy belief decision matrix. A numerical example is provided to illustrate the detailed implementation process of the FIER approach and its validity and applicability. © 2008 Springer-Verlag Berlin Heidelberg.
Original language | English |
---|---|
Title of host publication | Advances in Soft Computing|Adv. Soft Comput. |
Pages | 129-140 |
Number of pages | 11 |
Volume | 46 |
DOIs | |
Publication status | Published - 2008 |
Event | International Workshop on Interval and Probabilistic Uncertainty in Knowledge Representation and Decision Making - JAIST, Nomi, Japan Duration: 25 Mar 2008 → 28 Mar 2008 |
Conference
Conference | International Workshop on Interval and Probabilistic Uncertainty in Knowledge Representation and Decision Making |
---|---|
City | JAIST, Nomi, Japan |
Period | 25/03/08 → 28/03/08 |