TY - JOUR
T1 - The glucocorticoid receptor regulates accurate chromosome segregation and is associated with malignancy
AU - Matthews, Laura
AU - Berry, Andrew
AU - Morgan, David
AU - Poolman, Toryn
AU - Bauer, K
AU - Kramer, F
AU - Spiller, David G
AU - Richardson, RV
AU - Chapman, KE
AU - Farrow, Stuart
AU - Norman, MR
AU - Williamson, AJK
AU - Whetton, AD
AU - Taylor, SS
AU - Tuckermann, JP
AU - White, MRH
AU - Ray, David
N1 - , Biotechnology and Biological Sciences Research Council, United Kingdom, Cancer Research UK, United Kingdom, Wellcome Trust, United Kingdom
PY - 2015/4/28
Y1 - 2015/4/28
N2 - The glucocorticoid receptor (GR) is a member of the nuclear receptor superfamily, which controls programs regulating cell proliferation, differentiation, and apoptosis. We have identified an unexpected role for GR in mitosis. We discovered that specifically modified GR species accumulate at the mitotic spindle during mitosis in a distribution that overlaps with Aurora kinases. We found that Aurora A was required to mediate mitosis-driven GR phosphorylation, but not recruitment of GR to the spindle. GR was necessary for mitotic progression, with increased time to complete mitosis, frequency of mitotic aberrations, and death in mitosis observed following GR knockdown. Complementation studies revealed an essential role for the GR ligand-binding domain, but no clear requirement for ligand binding in regulating chromosome segregation. The GR N-terminal domain, and specifically phosphosites S203 and S211, were not required. Reduced GR expression results in a cell cycle phenotype, with isolated cells from mouse and human subjects showing changes in chromosome content over prolonged passage. Furthermore, GR haploinsufficient mice have an increased incidence of tumor formation, and, strikingly, these tumors are further depleted for GR, implying additional GR loss as a consequence of cell transformation. We identified reduced GR expression in a panel of human liver, lung, prostate, colon, and breast cancers. We therefore reveal an unexpected role for the GR in promoting accurate chromosome segregation during mitosis, which is causally linked to tumorigenesis, making GR an authentic tumor suppressor gene.
AB - The glucocorticoid receptor (GR) is a member of the nuclear receptor superfamily, which controls programs regulating cell proliferation, differentiation, and apoptosis. We have identified an unexpected role for GR in mitosis. We discovered that specifically modified GR species accumulate at the mitotic spindle during mitosis in a distribution that overlaps with Aurora kinases. We found that Aurora A was required to mediate mitosis-driven GR phosphorylation, but not recruitment of GR to the spindle. GR was necessary for mitotic progression, with increased time to complete mitosis, frequency of mitotic aberrations, and death in mitosis observed following GR knockdown. Complementation studies revealed an essential role for the GR ligand-binding domain, but no clear requirement for ligand binding in regulating chromosome segregation. The GR N-terminal domain, and specifically phosphosites S203 and S211, were not required. Reduced GR expression results in a cell cycle phenotype, with isolated cells from mouse and human subjects showing changes in chromosome content over prolonged passage. Furthermore, GR haploinsufficient mice have an increased incidence of tumor formation, and, strikingly, these tumors are further depleted for GR, implying additional GR loss as a consequence of cell transformation. We identified reduced GR expression in a panel of human liver, lung, prostate, colon, and breast cancers. We therefore reveal an unexpected role for the GR in promoting accurate chromosome segregation during mitosis, which is causally linked to tumorigenesis, making GR an authentic tumor suppressor gene.
KW - DNA damage
KW - aneuploidy
KW - cancer
KW - glucocorticoid receptor
KW - mitosis
UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-84928691391&partnerID=MN8TOARS
U2 - 10.1073/pnas.1411356112
DO - 10.1073/pnas.1411356112
M3 - Article
C2 - 25847991
SN - 0027-8424
VL - 112
SP - 5479
EP - 5484
JO - Proceedings of the National Academy of Sciences
JF - Proceedings of the National Academy of Sciences
IS - 17
M1 - 1411356112
ER -