The Hydrangea simulations: galaxy formation in and around massive clusters

Yannick M Bahe, David Barnes, Claudio Dalla Vecchia, Scott Kay, Simon D. M. White, Ian G. McCarthy, Joop Schaye, Richard G Bower, Robert A. Crain, Tom Theuns, Adrian Jenkins, Sean L. McGee, Matthieu Schaller, Peter A Thomas, James W. Trayford

    Research output: Contribution to journalArticlepeer-review

    207 Downloads (Pure)

    Abstract

    We introduce the Hydrangea simulations, a suite of 24 cosmological hydrodynamic zoom-simulations of massive galaxy clusters (M200c = 1014–1015:4M) with baryon particle masses of 106M. Designed to study the impact of the cluster environment on galaxy formation, they are a key part of the ‘Cluster-EAGLE’ project (Barnes et al. 2017b). They use a galaxy formation model developed for the EAGLE project, which has been shown to yield both realistic field galaxies and hot gas fractions of galaxy groups consistent with observations. The total stellar mass content of the simulated clusters agrees with observations, but central cluster galaxies are too massive, by up to 0.6 dex. Passive satellite fractions are higher than in the field, and at stellar masses Mstar > 1010M this environmental effect is quantitatively consistent with observations. The predicted satellite stellar mass function matches data from local cluster surveys. Normalized to total mass, there are fewer low-mass (Mstar . 1010M) galaxies within the virial radius of clusters than in the field, primarily due to star formation quenching. Conversely, the simulations predict an overabundance of massive galaxies in clusters compared to the field that persists to their far outskirts (> 5r200c). This is caused by a significantly increased stellar mass fraction of (sub-)haloes in the cluster environment, by up to 0.3 dex even well beyond r200c. Haloes near clusters are also more concentrated than equally massive field haloes, but these two effects are largely uncorrelated.
    Original languageEnglish
    JournalMonthly Notices of the Royal Astronomical Society
    Early online date14 Jun 2017
    DOIs
    Publication statusPublished - 2017

    Keywords

    • galaxies
    • clusters: general
    • galaxies: stellar content
    • methods: numerical

    Fingerprint

    Dive into the research topics of 'The Hydrangea simulations: galaxy formation in and around massive clusters'. Together they form a unique fingerprint.

    Cite this