The influence of oxygen deficiency and Sb doping on inverse photoemission spectra of SnO2

P. C. Hollamby, P. S. Aldridge, G. Moretti, R. G. Egdell, W. R. Flavell

    Research output: Contribution to journalArticlepeer-review

    Abstract

    The changes in the empty electronic states in SnO2 produced by ion-beam induced oxygen deficiency and by Sb doping have been studied by inverse photoemission spectroscopy. Inverse photoemission in SnO2 itself is dominated by peaks 4 and 12 eV above the Fermi level, the former associated with empty states of dominant Sn 5p atomic character. Sb doping populates states in the Sn 5s conduction band, shifting the empty state structure closer to the Fermi energy. By contrast oxygen deficiency introduces new states above the main Sn 5p peak. These are tentatively described as 5s-5p hybrids pushed up in energy from the 5p band by mixing between atomic orbitais of different parity in the non-centrosymmetric cation environment of oxygen deficient SnO2. © 1993.
    Original languageEnglish
    Pages (from-to)393-397
    Number of pages4
    JournalSurface Science
    Volume280
    Issue number3
    Publication statusPublished - 10 Jan 1993

    Fingerprint

    Dive into the research topics of 'The influence of oxygen deficiency and Sb doping on inverse photoemission spectra of SnO2'. Together they form a unique fingerprint.

    Cite this