Abstract
The reflection anisotropy spectra (RAS) observed initially from Au(110)/phosphate buffer interfaces at applied potentials of -0.652 and 0.056V are very similar to the spectra observed from ordered Au(110) (1×3) and anion induced (1×1) surface structures respectively. These RAS profiles transform to a common profile after cycling the potential between these two values over 72h indicating the formation of a less ordered surface. The RAS of a monolayer of a P499C variant of the human flavoprotein cytochrome P450 reductase adsorbed at 0.056V at an ordered Au(110)/phosphate buffer interface is shown to arise from an ordered layer in which the optical dipole transitions are in a plane that is orientated roughly normal to the surface and parallel to either the [11-0] or [001] axes of the Au(110) surface. The same result was found previously for adsorption of P499C on an ordered interface at -0.652V. The adsorption of P499C at the disordered surface does not result in the formation of an ordered monolayer confirming that the molecular ordering is strongly influenced by both the local structure and the long range macroscopic order of the Au(110) surface. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Original language | English |
---|---|
Pages (from-to) | 549-554 |
Number of pages | 5 |
Journal | Physica Status Solidi (B) Basic Research |
Volume | 251 |
Issue number | 3 |
DOIs | |
Publication status | Published - Mar 2014 |
Keywords
- Adsorption
- Cytochrome P450 reductase
- Gold
- Reflection anisotropy spectroscopy