TY - JOUR
T1 - The Jodrell Bank Glitch Catalogue: 106 new rotational glitches in 70 pulsars
AU - Basu, Avishek
AU - Shaw, Benjamin
AU - Weltevrede, Patrick
AU - Keith, Michael
AU - Stappers, Benjamin
AU - Antonopoulou, Danai
AU - Lyne, Andrew
AU - Mickaliger, Mitchell
AU - Jordan, Christine
PY - 2022/3/1
Y1 - 2022/3/1
N2 - Pulsar glitches are rapid spin-up events that occur in the rotation of neutron stars, providing a valuable probe into the physics of the interiors of these objects. Long-term monitoring of a large number of pulsars facilitates the detection of glitches and the robust measurements of their parameters. The Jodrell Bank pulsar timing programme regularly monitors more than 800 radio pulsars and has accrued, in some cases, over 50 years of timing history on individual objects. In this paper we present 106 new glitches in 70 radio pulsars as observed up to the end of 2018. For 70% of these pulsars, the event we report is its only known glitch. For each new glitch we provide measurements of its epoch, amplitude and any detected changes to the spin-down rate of the star. Combining these new glitches with those listed in the Jodrell Bank glitch catalogue we analyse a total sample of 543 glitches in 178 pulsars. We model the distribution of glitch amplitudes and spin-down rate changes using a mixture of two Gaussian components. We corroborate the known dependence of glitch rate and activity on pulsar spin-down rates and characteristic ages, and show that younger pulsars tend to exhibit larger glitches. Pulsars with spin-down rates between 1E-14 Hz/s and 1E-10.5 Hz/s show a mean reversal of 1.8% of their spin-down as a consequence of glitches. Our results are qualitatively consistent with the superfluid vortex unpinning models of pulsar glitches.
AB - Pulsar glitches are rapid spin-up events that occur in the rotation of neutron stars, providing a valuable probe into the physics of the interiors of these objects. Long-term monitoring of a large number of pulsars facilitates the detection of glitches and the robust measurements of their parameters. The Jodrell Bank pulsar timing programme regularly monitors more than 800 radio pulsars and has accrued, in some cases, over 50 years of timing history on individual objects. In this paper we present 106 new glitches in 70 radio pulsars as observed up to the end of 2018. For 70% of these pulsars, the event we report is its only known glitch. For each new glitch we provide measurements of its epoch, amplitude and any detected changes to the spin-down rate of the star. Combining these new glitches with those listed in the Jodrell Bank glitch catalogue we analyse a total sample of 543 glitches in 178 pulsars. We model the distribution of glitch amplitudes and spin-down rate changes using a mixture of two Gaussian components. We corroborate the known dependence of glitch rate and activity on pulsar spin-down rates and characteristic ages, and show that younger pulsars tend to exhibit larger glitches. Pulsars with spin-down rates between 1E-14 Hz/s and 1E-10.5 Hz/s show a mean reversal of 1.8% of their spin-down as a consequence of glitches. Our results are qualitatively consistent with the superfluid vortex unpinning models of pulsar glitches.
U2 - 10.1093/mnras/stab3336
DO - 10.1093/mnras/stab3336
M3 - Article
SN - 1365-2966
VL - 510
SP - 4049
EP - 4062
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 3
ER -