TY - JOUR
T1 - The Neural Correlates of Inhibiting Pursuit to Smoothly Moving Targets.
AU - Burke, Melanie Rose
AU - Barnes, G R
PY - 2011/3/31
Y1 - 2011/3/31
N2 - A previous study has shown that actively pursuing a moving target provides a predictive motor advantage when compared with passive observation of the moving target while keeping the eyes still [Burke, M. R., & Barnes, G. R. Anticipatory eye movements evoked after active following versus passive observation of a predictable motion stimulus. Brain Research, 15, 74-81, 2008b]. By using a novel paradigm based on combining a smooth pursuit stimulus with a go/no-go task, we have been able to reveal significant differences in brain activity for the inhibition of pursuit during the presentation of a smoothly moving target. Areas that show specific inhibitory and retinocentric velocity storage activity for the passive (no-go) condition include the dorsolateral pFC, the caudate, and the posterior cingulate. The FEFs, the supramarginal gyrus, the medial occipital gyrus, and the superior parietal lobe were found to be more involved in both the acquisition and response generation during no-go trials when compared with go trials. The go trials revealed higher activity than the no-go during the acquisition phase in the uncus and posterior cingulate. Furthermore, higher motor-related activity in the go task was found in the cerebellum. In summary, the areas involved inhibiting smooth pursuit are consistent with the findings from the saccade literature, providing further evidence in support of overlapping cortical control networks.
AB - A previous study has shown that actively pursuing a moving target provides a predictive motor advantage when compared with passive observation of the moving target while keeping the eyes still [Burke, M. R., & Barnes, G. R. Anticipatory eye movements evoked after active following versus passive observation of a predictable motion stimulus. Brain Research, 15, 74-81, 2008b]. By using a novel paradigm based on combining a smooth pursuit stimulus with a go/no-go task, we have been able to reveal significant differences in brain activity for the inhibition of pursuit during the presentation of a smoothly moving target. Areas that show specific inhibitory and retinocentric velocity storage activity for the passive (no-go) condition include the dorsolateral pFC, the caudate, and the posterior cingulate. The FEFs, the supramarginal gyrus, the medial occipital gyrus, and the superior parietal lobe were found to be more involved in both the acquisition and response generation during no-go trials when compared with go trials. The go trials revealed higher activity than the no-go during the acquisition phase in the uncus and posterior cingulate. Furthermore, higher motor-related activity in the go task was found in the cerebellum. In summary, the areas involved inhibiting smooth pursuit are consistent with the findings from the saccade literature, providing further evidence in support of overlapping cortical control networks.
U2 - 10.1162/jocn_a_00025
DO - 10.1162/jocn_a_00025
M3 - Article
C2 - 21452936
SN - 1530-8898
JO - Journal of Cognitive Neuroscience
JF - Journal of Cognitive Neuroscience
ER -