Abstract
Cochlear implant listeners typically perform poorly in tasks of complex pitch perception (e.g., musical pitch and voice pitch). One explanation is that wide current spread during implant activation creates channel interactions that may interfere with perception of temporal fundamental frequency information contained in the amplitude modulations within channels. Current focusing using a tripolar mode of stimulation has been proposed as a way of reducing channel interactions, minimising spread of excitation and potentially improving place and temporal pitch cues. The present study evaluated the effect of mode in a group of cochlear implant listeners on a pitch ranking task using male and female singing voices separated by either a half or a quarter octave. Results were variable across participants, but on average, pitch ranking was at chance level when the pitches were a quarter octave apart and improved when the difference was a half octave. No advantage was observed for tripolar over monopolar mode at either pitch interval, suggesting that previously published psychophysical advantages for focused modes may not translate into improvements in complex pitch ranking. Evaluation of the spectral centroid of the stimulation pattern, plus a lack of significant difference between male and female voices, suggested that participants may have had difficulty in accessing temporal pitch cues in either mode.
Original language | English |
---|---|
Article number | 2524 |
Journal | The Journal of the Acoustical Society of America |
Volume | 138 |
Issue number | 4 |
DOIs | |
Publication status | Published - 29 Oct 2015 |
Fingerprint
Dive into the research topics of 'The perception of complex pitch in cochlear implants: A comparison of monopolar and tripolar stimulation'. Together they form a unique fingerprint.Projects
-
Manchester Centre for Audiology and Deafness (ManCAD)
Munro, K., Millman, R., Lamb, W., Dawes, P., Plack, C., Stone, M., Kluk-De Kort, K., Moore, D., Morton, C., Prendergast, G., Couth, S., Schlittenlacher, J., Chilton, H., Visram, A., Dillon, H., Guest, H., Heinrich, A., Jackson, I., Littlejohn, J., Jones, L., Lough, M., Morgan, R., Perugia, E., Roughley, A., Short, A., Whiston, H., Wright, C., Saunders, G. & Kelly, C.
Project: Research