The photochemical mechanism of a B12-dependent photoreceptor protein

Roger Kutta, Samantha Hardman, Linus Johannissen, B. Bellina, Hanan Messiha, J. M. Ortiz-Guerrero, M Elías-Arnanz, S. Padmanabhan, Perdita Barran, Nigel Scrutton, A. R. Jones

    Research output: Contribution to journalArticlepeer-review


    The coenzyme B-12-dependent photoreceptor protein, CarH, is a bacterial transcriptional regulator that controls the biosynthesis of carotenoids in response to light. On binding of coenzyme B-12 the monomeric apoprotein forms tetramers in the dark, which bind operator DNA thus blocking transcription. Under illumination the CarH tetramer dissociates, weakening its affinity for DNA and allowing transcription. The mechanism by which this occurs is unknown. Here we describe the photochemistry in CarH that ultimately triggers tetramer dissociation; it proceeds via a cob(III)alamin intermediate, which then forms a stable adduct with the protein. This pathway is without precedent and our data suggest it is independent of the radical chemistry common to both coenzyme B-12 enzymology and its known photochemistry. It provides a mechanistic foundation for the emerging field of B-12 photobiology and will serve to inform the development of a new class of optogenetic tool for the control of gene expression.
    Original languageEnglish
    Article number7907
    Pages (from-to)7907
    JournalNature Communications
    Publication statusPublished - 12 Aug 2015


    • multiple sequence alignment
    • ethanolamine ammonia-lyase
    • excited-state dynamics
    • gene-expression
    • b-12 coenzymes
    • absorption-spectroscopy
    • myxococcus-xanthus
    • efficiency factor
    • glutamate mutase
    • radical pair

    Research Beacons, Institutes and Platforms

    • Photon Science Institute


    Dive into the research topics of 'The photochemical mechanism of a B12-dependent photoreceptor protein'. Together they form a unique fingerprint.

    Cite this