The polyunsaturated fatty acids, EPA and DPA exert a protective effect in the hippocampus of the aged rat

Laura Kelly, Belinda Grehan, Andrea Della Chiesa, Shane M. O'Mara, Eric Downer, George Sahyoun, Karen A. Massey, Anna Nicolaou, Marina A. Lynch

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Age is characterized by deficits in synaptic function identified by decreased performance of aged animals in spatial learning tasks and reduced ability of animals to sustain long term potentiation (LTP). Several cellular and molecular events are correlated with these deficits, many of which are indicative of age-related neuroinflammatory and oxidative cell stress. It is significant that agents which decrease microglial activation are commonly associated with restoration of function. We set out to examine whether the n-3 polyunsaturated fatty acid docosapentaenoic acid (DPA), which is a metabolite of eicosapentaenoic acid (EPA), could modulate the age-related increase in microglial activation and the associated increase in oxidative changes and therefore impact on synaptic function in aged rats. We demonstrate that docosapentaenoic acid possesses neurorestorative effects and is capable of downregulating microglial activation. The data show that it also decreases the coupled activation of sphingomyelinase and caspase 3, probably because of its ability to decrease age-related oxidative changes, and consequently attenuates the age-related decrease in spatial learning and long-term potentiation. © 2011 Elsevier Inc.
    Original languageEnglish
    Pages (from-to)2318-e15
    JournalNeurobiology of Aging
    Volume32
    Issue number12
    DOIs
    Publication statusPublished - Dec 2011

    Keywords

    • Age
    • Ceramide
    • Hippocampus
    • Long-term potentiation
    • Polyunsaturated fatty acids
    • Reactive oxygen species
    • Spatial learning
    • Synaptic function

    Fingerprint

    Dive into the research topics of 'The polyunsaturated fatty acids, EPA and DPA exert a protective effect in the hippocampus of the aged rat'. Together they form a unique fingerprint.

    Cite this