The properties of dimers confined between two charged plates

Marius M. Hatlo, Klemen Bohinc, Leo Lue

    Research output: Contribution to journalArticlepeer-review

    Abstract

    We consider two like-charged planar surfaces immersed in solution of oppositely charged dimer counterions with a bond length l. To analyze this system, we extend and employ a self-consistent field theory that has been shown to be accurate from the weak to the intermediate through to the strong coupling regimes. In the limit of very short dimers, the results converge to the results for pointlike divalent ions. Near the surfaces, the dimers lie parallel to the charged plates. In the intermediate coupling regime, the dimers are aligned perpendicularly to the surface when they are a distance l from a surface. In the weak coupling regime, the interactions are only repulsive. At slightly higher couplings, there is a minimum in the variation of the free energy with distance at approximately the bond length of the dimers, which arises from bridging conformations of the dimers. In the intermediate coupling regime, an additional minimum in the free energy is observed at much smaller distances, which is due to the correlations between the dimers. For large dimer bond lengths, this minimum is metastable with respect to the previous minimum. However, as the bond length decreases, this minimum becomes the stable, while the minimum associated with the dimer bond length becomes metastable and eventually disappears. For shorter dimer bond length the attractive interaction is the result of correlations between counterions and charges on the surfaces. We find that dimers can mediate attractive interaction between like-charged surfaces in the intermediate coupling regime. The analysis of orientations confirms the bridging mechanism for sufficiently long dimers, whereas at high electrostatic couplings charge correlations contribute to the attraction. © 2010 American Institute of Physics.
    Original languageEnglish
    Article number114102
    JournalJournal of Chemical Physics
    Volume132
    Issue number11
    DOIs
    Publication statusPublished - 2010

    Fingerprint

    Dive into the research topics of 'The properties of dimers confined between two charged plates'. Together they form a unique fingerprint.

    Cite this