The synthesis of a monodisperse quaternary ferrite (FeCoCrO4) from the hot injection thermolysis of the single source precursor [CrCoFeO(O2C: TBu)6(HO2CtBu)3]

Khadijat O. Abdulwahab*, Mohammad A. Malik, Paul O'Brien, Iñigo J. Vitorica-Yrezabal, Grigore A. Timco, Floriana Tuna, Richard E.P. Winpenny

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Monodisperse cobalt chromium ferrite (FeCoCrO4) nanoparticles have been synthesised using the trimetallic pivalate cluster [CrCoFeO(O2CtBu)6(HO2CtBu)3]. The precursor was thermolysed in oleylamine and oleic acid, with diphenyl ether as the solvent at 260 °C. The effect of time and the concentration of the precursor on the stoichiometry of the phase formed and/or the morphology of the nanoparticles was studied. The reaction time was investigated by withdrawing aliquots at different times. No products were formed after 5 minutes and aliquots withdrawn at reaction times of less than 1 hour contain traces of iron oxide (Fe2O3); only cubic cobalt chromium ferrite (FeCoCrO4) was obtained after one hour. Transmission Electron Microscopy (TEM) showed that more monodisperse spherical ferrite nanoparticles (4.0 ± 0.4 nm) were obtained at higher precursor concentrations. Magnetic measurements revealed that all the ferrite particles are superparamagnetic at room temperature but showed large hysteresis at low temperature. The nanoparticles were characterised by Powder X-Ray Diffraction (p-XRD) and Transmission Electron Microscopy (TEM). A Superconducting Quantum Interference Device (SQUID) was used to analyse the magnetic properties of the nanoparticles.

    Original languageEnglish
    Pages (from-to)376-381
    Number of pages6
    JournalDalton Transactions
    Volume47
    Issue number2
    Early online date8 Dec 2017
    DOIs
    Publication statusPublished - 2018

    Fingerprint

    Dive into the research topics of 'The synthesis of a monodisperse quaternary ferrite (FeCoCrO4) from the hot injection thermolysis of the single source precursor [CrCoFeO(O2C: TBu)6(HO2CtBu)3]'. Together they form a unique fingerprint.

    Cite this