Abstract
A multi-objective optimization problem involves multiple and conflicting objectives. These conflicting objectives give rise to a set of Pareto-optimal solutions. However, not all the members of the Pareto-optimal set have equally nice properties. The classical concept of proper Pareto-optimality is a way of characterizing good Pareto-optimal solutions. In this paper, we metrize this concept to induce an ordering on the Pareto-optimal set. The use of this metric allows us to define a proper knee region, which contains solutions below a user-specified threshold metric. We theoretically analyze past definitions of knee points, and in particular, reformulate a commonly used nonlinear program, to achieve convergence results. Additionally, mathematical properties of the proper knee region are investigated. We also develop two multi-objective evolutionary algorithms towards finding proper knees and present simulation results on a number of test problems.
Original language | English |
---|---|
Pages (from-to) | 156-170 |
Journal | Lecture Notes in Computer Science |
Volume | 7811 |
Publication status | Published - 2013 |
Keywords
- knee regions
- proper Pareto-optimality
- ordering relations
- evolutionary algorithms