Therapeutic Radiographers at the Helm: Moving Towards Radiographer-Led MR-Guided Radiotherapy.

RB Hales, J Rodgers, L Whiteside, L McDaid, J Berresford, G Budgell, A Choudhury, CL Eccles

Research output: Contribution to journalArticlepeer-review


Magnetic resonance–guided adaptive radiotherapy (MRgART) has the potential to improve treatment processes and outcomes for a variety of tumour sites; however, it requires significant clinical resources. Magnetic resonance linear accelerator (MR-linac) treatments require a daily multidisciplinary presence for delivery. To facilitate sustainable MRgART models, agreed protocols facilitating therapeutic radiographer (RTT)-led delivery must be developed to establish a service similar to conventional image-guided radiotherapy (IGRT). This work provides a clinical perspective on the implementation of a protocol-driven ‘clinician-lite’ MRgART workflow at one institution.
To identify knowledge, skills, and competence required at each step in the MRgART workflow, an interdisciplinary informal survey and needs assessment were undertaken to identify additional or enhanced skills required for MRgART, over and above those required for conventional cone-beam computed tomography–based IGRT. The MRgART pathway was critically evaluated by relevant professionals to encourage multidisciplinary input and discussion, allowing an iterative development of the RTT-led workflow. Starting with the simplest online adaptation strategy, consisting of a virtual couch shift and online replanning, clear guidelines were established for the delivery of radical prostate radiotherapy with a reduction in staff numbers present.
The MRgART-specific skills identified included MRI safety and screening, MR image acquisition, MRI-based anatomy, multimodality image interpretation and registration, and treatment plan evaluation. These skills were developed in RTTs via tutorials, workshops, focussed self-directed reading, teaching of colleagues, and end-to-end workflow testing. After initial treatments and discussions, roles and responsibilities of the three professional groups (clinicians, RTTs, and physicists) have evolved to achieve a ‘clinician-lite’ workflow for simple radical prostate treatments.
Through applying a definitive framework and establishing agreed threshold and action levels for action within anticipated treatment scenarios similar to those in cone-beam computed tomography–based IGRT, we have implemented a ‘clinician-lite’ workflow for simple adaptive treatments on the MR-linac. The responsibility for online plan evaluation and approval now rests with physicists and RTTs to streamline MRgART. Early evaluation of the framework after treatment of 10 patients has required minimal online clinician input (1.5% of 200 fractions delivered).
A ‘clinician-lite’ prostate treatment workflow has been successfully introduced on the MR-linac at our institution and will serve as a model for other tumour sites, using more complex adaptive strategies. Early indications are that this framework has the potential to improve patient throughput and efficiency. Further identification and validation of roles and responsibilities such as online contouring, and more interactive online planning, will facilitate RTTs to fully lead in the online workflow as adaptive radiotherapy becomes ever more complex.
Original languageEnglish
Pages (from-to)364-372
JournalJournal of medical imaging and radiation sciences
Issue number3
Publication statusPublished - 26 Jun 2020

Research Beacons, Institutes and Platforms

  • Manchester Cancer Research Centre


Dive into the research topics of 'Therapeutic Radiographers at the Helm: Moving Towards Radiographer-Led MR-Guided Radiotherapy.'. Together they form a unique fingerprint.

Cite this