Thickness measurement of metallic film based on a high-frequency feature of triple-coil electromagnetic eddy current sensor

Mingyang Lu*, Liming Chen, Xiaobai Meng, Ruochen Huang*, Anthony Peyton, Wuliang Yin*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

106 Downloads (Pure)

Abstract

Previously, various techniques have been proposed for reducing the lift-off effect on the thickness measurement of the non-magnetic films, including the peak-frequency feature and phase feature in the Dodd-Deed analytical formulation. To realise a real-time feedback response on the thickness monitoring, the phase term in the Dodd-Deeds formulation must be taken off the integration. Previous methods were based on the slow change rate of the phase term when compared to the rest of the term – the magnitude term. However, the change rate of the phase term is still considerable for a range of working frequencies. In this paper, a high-frequency feature has been found. That is, the ratio between the imaginary and real part of the phase term is proportional to the integral variable α under high frequencies. Based on this proportion relationship, the phase term has been taken out; and a thickness algorithm has been proposed. By combing the measured impedance from the custom-built sensor (three coils), the thickness of the metallic film can be reconstructed. Experiments have been carried out for the verification of the proposed scenario. Results show that the thickness of the metal film can be reconstructed with a small error of less than 2 %, and immune to a reasonable range of lift-offs.
Original languageEnglish
Article number6001208
JournalIEEE Transactions on Instrumentation and Measurement
Volume70
DOIs
Publication statusPublished - 30 Sept 2020

Keywords

  • Eddy current testing (ECT)
  • lift-off
  • nondestructive testing
  • real-time monitoring
  • thickness measurement

Fingerprint

Dive into the research topics of 'Thickness measurement of metallic film based on a high-frequency feature of triple-coil electromagnetic eddy current sensor'. Together they form a unique fingerprint.
  • Electromagnetic Sensing Group

    Peyton, A. (PI), Fletcher, A. (Researcher), Daniels, D. (CoI), Conniffe, D. (PGR student), Podd, F. (PI), Davidson, J. (Researcher), Anderson, J. (Support team), Wilson, J. (Researcher), Marsh, L. (PI), O'Toole, M. (PI), Watson, S. (PGR student), Yin, W. (PI), Regan, A. (PGR student), Williams, K. (Researcher), Rana, S. (Researcher), Khalil, K. (PGR student), Hills, D. (PGR student), Whyte, C. (PGR student), Wang, C. (PGR student), Hodgskin-Brown, R. (PGR student), Dadkhahtehrani, F. (PGR student), Forster, S. (PGR student), Zhu, F. (PGR student), Yu, K. (PGR student), Xiong, L. (PGR student), Lu, T. (PGR student), Zhang, L. (PGR student), Lyu, R. (PGR student), Zhu, R. (PGR student), She, S. (PGR student), Meng, T. (PGR student), Pang, X. (PGR student), Zheng, X. (PGR student), Bai, X. (PGR student), Zou, X. (PGR student), Ding, Y. (PGR student), Shao, Y. (PGR student), Xia, Z. (PGR student), Zhang, Z. (PGR student), Khangerey, R. (PGR student) & Lawless, B. (Researcher)

    1/10/04 → …

    Project: Research

Cite this