TY - JOUR
T1 - Thymocyte apoptosis drives the intrathymic generation of regulatory T cells.
AU - Konkel, Joanne E
AU - Jin, Wenwen
AU - Abbatiello, Brittany
AU - Grainger, John R
AU - Chen, WanJun
N1 - , Intramural NIH HHS, United States
PY - 2014/1/28
Y1 - 2014/1/28
N2 - Maintenance of immune tolerance critically depends upon regulatory T cells that express the transcription factor forkhead box P3 (Foxp3). These CD4(+) T cells can be generated in the thymus, termed thymus-derived regulatory T cells (tTregs), but their developmental pathway remains incompletely understood. tTreg development has been shown to be delayed compared with that of CD4(+) single positive (SP) thymocytes, with tTregs being detected only in neonatal thymi by day 3 after birth. Here, we outline the reasons for this delayed emergence of Foxp3(+) tTregs and demonstrate that thymocyte apoptosis is intrinsically tied to tTreg development. We show that thymic apoptosis leads to the production of TGFβ intrathymically from thymic macrophages, dendritic cells, and epithelial cells. This TGFβ then induces foxp3 expression and drives tTreg generation. Thymocyte apoptosis has previously been shown to accelerate after birth, which drives increases in TGFβ in the neonatal thymus. We highlight a paucity of TGFβ in the neonatal thymus, accounting for the delayed development of tTregs compared with CD4(+) SP thymocytes. Importantly, we show that enhanced levels of apoptosis in the thymus result in an augmented tTreg population and, moreover, that decreasing thymic apoptosis results in reduced tTregs. In addition to this, we also show that T-cell receptor (TCR) signals of different affinity were all capable of driving tTreg development; however, to achieve this TGFβ signals must also be received concomitant with the TCR signal. Collectively, our results indicate that thymic apoptosis is a key event in tTreg generation and reveal a previously unrecognized apoptosis-TGFβ-Foxp3 axis that mediates the development of tTregs.
AB - Maintenance of immune tolerance critically depends upon regulatory T cells that express the transcription factor forkhead box P3 (Foxp3). These CD4(+) T cells can be generated in the thymus, termed thymus-derived regulatory T cells (tTregs), but their developmental pathway remains incompletely understood. tTreg development has been shown to be delayed compared with that of CD4(+) single positive (SP) thymocytes, with tTregs being detected only in neonatal thymi by day 3 after birth. Here, we outline the reasons for this delayed emergence of Foxp3(+) tTregs and demonstrate that thymocyte apoptosis is intrinsically tied to tTreg development. We show that thymic apoptosis leads to the production of TGFβ intrathymically from thymic macrophages, dendritic cells, and epithelial cells. This TGFβ then induces foxp3 expression and drives tTreg generation. Thymocyte apoptosis has previously been shown to accelerate after birth, which drives increases in TGFβ in the neonatal thymus. We highlight a paucity of TGFβ in the neonatal thymus, accounting for the delayed development of tTregs compared with CD4(+) SP thymocytes. Importantly, we show that enhanced levels of apoptosis in the thymus result in an augmented tTreg population and, moreover, that decreasing thymic apoptosis results in reduced tTregs. In addition to this, we also show that T-cell receptor (TCR) signals of different affinity were all capable of driving tTreg development; however, to achieve this TGFβ signals must also be received concomitant with the TCR signal. Collectively, our results indicate that thymic apoptosis is a key event in tTreg generation and reveal a previously unrecognized apoptosis-TGFβ-Foxp3 axis that mediates the development of tTregs.
KW - TCR affinity
KW - phagocytes
KW - thymic Treg
U2 - 10.1073/pnas.1320319111
DO - 10.1073/pnas.1320319111
M3 - Article
C2 - 24474796
SN - 1091-6490
VL - 111
SP - E465-E473
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 4
ER -