Abstract
Original language | English |
---|---|
Pages (from-to) | 2447-2456 |
Number of pages | 10 |
Journal | Cellular and Molecular Life Sciences |
Volume | 75 |
Issue number | 13 |
Early online date | 30 Dec 2017 |
DOIs | |
Publication status | Published - 2018 |
Keywords
- Epigenetics
- hTERT
- Mitochondrial DNA copy number
- Regulatory T cells
- T Lymphocytes
- Telomerase activity
- Telomere length
- Telomere-independent functions of telomerase
- Twin studies
- mitochondrial DNA
- telomerase reverse transcriptase
- adult
- aged
- Article
- B lymphocyte
- CD3+ T lymphocyte
- cellular distribution
- co twin similarity
- controlled study
- cytotoxic T lymphocyte
- enzyme activity
- enzyme linked immunosorbent assay
- epigenetics
- female
- flow cytometry
- gene dosage
- genetic parameters
- helper cell
- human
- human cell
- immunophenotyping
- Jurkat cell line
- leukemia cell line
- male
- Mono-Mac-6 cell line
- monozygotic twins
- peripheral blood mononuclear cell
- polymerase chain reaction
- regulatory T lymphocyte
- T lymphocyte subpopulation
- telomere length
- telomeric repeat amplification protocol
Access to Document
Fingerprint
Dive into the research topics of 'Tight co-twin similarity of monozygotic twins for hTERT protein level of T cell subsets, for telomere length and mitochondrial DNA copy number, but not for telomerase activity'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Cellular and Molecular Life Sciences, Vol. 75, No. 13, 2018, p. 2447-2456.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Tight co-twin similarity of monozygotic twins for hTERT protein level of T cell subsets, for telomere length and mitochondrial DNA copy number, but not for telomerase activity
AU - Melicher, D.
AU - Illés, A.
AU - Pállinger, É.
AU - Kovács, Á
AU - Littvay, L.
AU - Tárnoki, Á.D.
AU - Tárnoki, D.L.
AU - Bikov, A.
AU - Molnár, M.J.
AU - Buzás, E.I.
AU - Falus, A.
N1 - Export Date: 31 October 2018 CODEN: CMLSF Correspondence Address: Falus, A.; Department of Genetics, Cell- and Immunobiology, Semmelweis UniversityHungary; email: [email protected] Chemicals/CAS: telomerase reverse transcriptase, 120178-12-3 Funding details: 2015 Funding text: Funding The study was supported by the grant of Hungarian Pulmo-nology Foundation (2015). References: Alegria-Torres, J.A., Velazquez-Villafana, M., Lopez-Gutierrez, J.M., Chagoyan-Martinez, M.M., Rocha-Amador, D.O., Costilla-Salazar, R., Garcia-Torres, L., Association of Leukocyte Telomere Length and Mitochondrial DNA Copy Number in Children from Salamanca, Mexico (2016) Genet Test Mol Biomarkers, 20, pp. 654-659. , PID: 27622310; Bates, D., Mächler, M., Bolker, B., Walker, S., Fitting linear mixed-effects models using lme4 (2015) J Stat Softw, 67 (1), pp. 1-48; Blackburn, E.H., Greider, C.W., Szostak, J.W., Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging (2006) Nat Med, 12, pp. 1133-1138. , PID: 17024208; Bratic, A., Larsson, N.G., The role of mitochondria in aging (2013) J Clin Invest, 123, pp. 951-957. , PID: 23454757; Cairney, C.J., Keith, W.N., Telomerase redefined: integrated regulation of hTR and hTERT for telomere maintenance and telomerase activity (2008) Biochimie, 90, pp. 13-23. , PID: 17854971; Chan, S.W., Blackburn, E.H., New ways not to make ends meet: telomerase, DNA damage proteins and heterochromatin (2002) Oncogene, 21, pp. 553-563. , PID: 11850780; Chou, J.P., Effros, R.B., T cell replicative senescence in human aging (2013) Curr Pharm Des, 19, pp. 1680-1698. , PID: 23061726; Cohen, S.B., Graham, M.E., Lovrecz, G.O., Bache, N., Robinson, P.J., Reddel, R.R., Protein composition of catalytically active human telomerase from immortal cells (2007) Science, 315, pp. 1850-1853. , PID: 17395830; Collins, K., Mitchell, J.R., Telomerase in the human organism (2002) Oncogene, 21, pp. 564-579. , PID: 11850781; Correia-Melo, C., Hewitt, G., Passos, J.F., Telomeres, oxidative stress and inflammatory factors: partners in cellular senescence? (2014) Longev Healthspan, 3, p. 1. , PID: 24472138; Counter, C.M., Gupta, J., Harley, C.B., Leber, B., Bacchetti, S., Telomerase activity in normal leukocytes and in hematologic malignancies (1995) Blood, 85, pp. 2315-2320. , PID: 7727765; D’Hautcourt, J.L., Quantitative flow cytometric analysis of membrane antigen expression. Curr Protoc Cytom, Chapter 6 (2002) Unit, 6, p. 12; Fraga, M.F., Ballestar, E., Paz, M.F., Ropero, S., Setien, F., Ballestar, M.L., Heine-Suner, D., Esteller, M., Epigenetic differences arise during the lifetime of monozygotic twins (2005) Proc Natl Acad Sci USA, 102, pp. 10604-10609. , PID: 16009939; Hakonen, A.H., Isohanni, P., Paetau, A., Herva, R., Suomalainen, A., Lonnqvist, T., Recessive Twinkle mutations in early onset encephalopathy with mtDNA depletion (2007) Brain, 130, pp. 3032-3040. , PID: 17921179; Handa, H., Matsushima, T., Nishimoto, N., Inoue, M., Saitoh, T., Yokohama, A., Tsukamoto, N., Murakami, H., Flow cytometric detection of human telomerase reverse transcriptase (hTERT) expression in a subpopulation of bone marrow cells (2010) Leuk Res, 34, pp. 177-183. , PID: 19604579; Hiyama, K., Hirai, Y., Kyoizumi, S., Akiyama, M., Hiyama, E., Piatyszek, M.A., Shay, J.W., Yamakido, M., Activation of telomerase in human lymphocytes and hematopoietic progenitor cells (1995) J Immunol, 155, pp. 3711-3715. , PID: 7561072; Kaszubowska, L., Telomere shortening and ageing of the immune system (2008) J Physiol Pharmacol, 59, pp. 169-186. , PID: 19261979; Kazachkova, N., Ramos, A., Santos, C., Lima, M., Mitochondrial DNA damage patterns and aging: revising the evidences for humans and mice (2013) Aging Dis, 4, pp. 337-350. , PID: 24307967; Kim, J.-H., Kim, H.K., Ko, J.-H., Bang, H., Lee, D.-C., The relationship between leukocyte mitochondrial DNA copy number and telomere length in community-dwelling elderly women (2013) PLoS One, 8. , PID: 23785520; Kim, N.W., Piatyszek, M.A., Prowse, K.R., Harley, C.B., West, M.D., Ho, P.L., Coviello, G.M., Shay, J.W., Specific association of human telomerase activity with immortal cells and cancer (1994) Science, 266, pp. 2011-2015. , PID: 7605428; Lee, H., Cho, J.-H., Park, W.-J., Jung, S.-J., Choi, I.-J., Lee, J.-H., Loss of the association between telomere length and mitochondrial DNA copy number contribute to colorectal carcinogenesis (2017) Pathol Oncol Res; Li, Z., Hu, M., Zong, X., He, Y., Wang, D., Dai, L., Dong, M., Tang, J., Association of telomere length and mitochondrial DNA copy number with risperidone treatment response in first-episode antipsychotic-naïve schizophrenia (2015) Scie Rep, 5, p. 18553; Littvay, L., Métneki, J., Tárnoki, Á.D., Tárnoki, D.L., The Hungarian twin registry (2012) Twin Res Human Genet, 16, pp. 185-189; Maida, Y., Masutomi, K., Telomerase reverse transcriptase moonlights: therapeutic targets beyond telomerase (2015) Cancer Sci, 106, pp. 1486-1492. , PID: 26331588; Maini, M.K., Soares, M.V., Zilch, C.F., Akbar, A.N., Beverley, P.C., Virus-induced CD8 + T cell clonal expansion is associated with telomerase up-regulation and telomere length preservation: a mechanism for rescue from replicative senescence (1999) J Immunol, 162, pp. 4521-4526. , PID: 10201990; Melicher, D., Buzas, E.I., Falus, A., Genetic and epigenetic trends in telomere research: a novel way in immunoepigenetics (2015) Cell Mol Life Sci, 72, pp. 4095-4109. , PID: 26190020; Morrison, S.J., Prowse, K.R., Ho, P., Weissman, I.L., Telomerase activity in hematopoietic cells is associated with self-renewal potential (1996) Immunity, 5, pp. 207-216. , PID: 8808676; O'Callaghan, N.J., Dhillon, V.S., Thomas, P., Fench, M., A quantitative real-time PCR method for absolute telomere length (2008) Biotechniques, 44, pp. 807-809. , PID: 18476834; Otsuka, I., Izumi, T., Boku, S., Kimura, A., Zhang, Y., Mouri, K., Okazaki, S., Hishimoto, A., Aberrant telomere length and mitochondrial DNA copy number in suicide completers (2017) Sci Rep, 7, p. 3176. , PID: 28600518; Passos, J.F., Saretzki, G., von Zglinicki, T., DNA damage in telomeres and mitochondria during cellular senescence: is there a connection? (2007) Nucleic Acids Res, 35, pp. 7505-7513. , PID: 17986462; Petronis, A., Epigenetics and twins: three variations on the theme (2006) Trends Genet, 22, pp. 347-350. , PID: 16697072; Pinheiro, J., Bates, D., (2009) Mixed-effects models in S and S-plus, , Springer, New York; Poulsen, P., Esteller, M., Vaag, A., Fraga, M.F., The epigenetic basis of twin discordance in age-related diseases (2007) Pediatr Res, 61, pp. 38r-42r. , PID: 17413848; Qiu, C., Enquobahrie, D.A., Gelaye, B., Hevner, K., Williams, M.A., The association between leukocyte telomere length and mitochondrial DNA copy number in pregnant women: a pilot study (2015) Clin Lab, 61, pp. 363-369. , PID: 25975004; (2016) R: A Language and Environment for Statistical Computing, , R Foundation for Statistical Computing; Ramlee, M.K., Wang, J., Toh, W.X., Li, S., Transcription regulation of the human telomerase reverse transcriptase (hTERT) gene (2016) Genes, 7, p. 50; Roth, A., Yssel, H., Pene, J., Chavez, E.A., Schertzer, M., Lansdorp, P.M., Spits, H., Luiten, R.M., Telomerase levels control the lifespan of human T lymphocytes (2003) Blood, 102, pp. 849-857. , PID: 12689947; Sahin, E., Colla, S., Liesa, M., Moslehi, J., Müller, F.L., Guo, M., Cooper, M., Depinho, R.A., Telomere dysfunction induces metabolic and mitochondrial compromise (2011) Nature, 470, pp. 359-365. , PID: 21307849; Sahin, E., Depinho, R.A., Axis of ageing: telomeres, p53 and mitochondria (2012) Nat Rev Mol Cell Biol, 13, pp. 397-404. , PID: 22588366; Sanderson, S.L., Simon, A.K., In aged primary T cells, mitochondrial stress contributes to telomere attrition measured by a novel imaging flow cytometry assay (2017) Aging Cell, 16, pp. 1234-1243. , PID: 28834142; Tan, Q., Christiansen, L., Thomassen, M., Kruse, T.A., Christensen, K., Twins for epigenetic studies of human aging and development (2013) Ageing Res Rev, 12, pp. 182-187. , PID: 22750314; Tyrka, A.R., Carpenter, L.L., Kao, H.-T., Porton, B., Philip, N.S., Ridout, S.J., Ridout, K.K., Price, L.H., Association of telomere length and mitochondrial DNA copy number in a community sample of healthy adults (2015) Exp Gerontol, 66, pp. 17-20. , PID: 25845980; Tyrka, A.R., Parade, S.H., Price, L.H., Kao, H.-T., Porton, B., Philip, N.S., Welch, E.S., Carpenter, L.L., Alterations of mitochondrial DNA copy number and telomere length with early adversity and psychopathology (2016) Biol Psychiat, 79, pp. 78-86. , PID: 25749099; Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B.C., Remm, M., Rozen, S.G., Primer3–new capabilities and interfaces (2012) Nucleic Acids Res, 40. , PID: 22730293; Venteicher, A.S., Abreu, E.B., Meng, Z., McCann, K.E., Terns, R.M., Veenstra, T.D., Terns, M.P., Artandi, S.E., A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis (2009) Science, 323, pp. 644-648. , PID: 19179534; Wright, W.E., Piatyszek, M.A., Rainey, W.E., Byrd, W., Shay, J.W., Telomerase activity in human germline and embryonic tissues and cells (1996) Dev Genet, 18, pp. 173-179. , PID: 8934879; Zhou, J., Ding, D., Wang, M., Cong, Y.-S., Telomerase reverse transcriptase in the regulation of gene expression (2014) BMB Rep, 47, pp. 8-14. , PID: 24388106; Zhu, X., Mao, Y., Huang, T., Yan, C., Yu, F., Du, J., Dai, J., Jin, G., High mitochondrial DNA copy number was associated with an increased gastric cancer risk in a Chinese population (2017) Mol Carcinog, 56, pp. 2593-2600. , PID: 28688194
PY - 2018
Y1 - 2018
N2 - Our study analyzed lymphocyte subpopulations of 32 monozygotic twins and compared the level of the catalytic reverse transcriptase protein subunit (hTERT) in T lymphocytes (Tly), helper- (Th), cytotoxic- (Tc) and regulatory T cell (Treg) subgroups. Four variables related to telomere and mitochondrial biology were simultaneously assessed, applying multi-parametric flow cytometry, TRAP-ELISA assay and qPCR standard curve method on peripheral blood mononuclear cell (PBMC) samples of genetically matched individuals. Twin data of telomerase activity (TA), hTERT protein level, telomere length (TL) and mitochondrial DNA copy number (mtDNAcn) were analyzed for co-twin similarity. The present study has provided novel information by demonstrating very high intraclass correlation (ICC) of hTERT protein level in T lymphocytes (0.891) and in both Th (0.896), Treg (0.885) and Tc (0.798) cell subgroups. When comparing results measured from PBMCs, intraclass correlation was also high for telomere length (0.815) and considerable for mtDNA copy number (0.524), and again exceptionally high for the rate-limiting telomerase subunit, hTERT protein level (0.946). In contrast, telomerase activity showed no co-twin similarity (ICC 0). By comparing relative amounts of hTERT protein levels in different lymphocyte subgroups of twin subjects, in Treg cells significantly higher level could be detected compared to Tly, Th or Tc cell subgroups. This is the first study that simultaneously analyzed co-twin similarity in MZ twins for the above four variables and alongside assessed their relationship, whereby positive association was found between TL and mtDNAcn. © 2017, Springer International Publishing AG, part of Springer Nature.
AB - Our study analyzed lymphocyte subpopulations of 32 monozygotic twins and compared the level of the catalytic reverse transcriptase protein subunit (hTERT) in T lymphocytes (Tly), helper- (Th), cytotoxic- (Tc) and regulatory T cell (Treg) subgroups. Four variables related to telomere and mitochondrial biology were simultaneously assessed, applying multi-parametric flow cytometry, TRAP-ELISA assay and qPCR standard curve method on peripheral blood mononuclear cell (PBMC) samples of genetically matched individuals. Twin data of telomerase activity (TA), hTERT protein level, telomere length (TL) and mitochondrial DNA copy number (mtDNAcn) were analyzed for co-twin similarity. The present study has provided novel information by demonstrating very high intraclass correlation (ICC) of hTERT protein level in T lymphocytes (0.891) and in both Th (0.896), Treg (0.885) and Tc (0.798) cell subgroups. When comparing results measured from PBMCs, intraclass correlation was also high for telomere length (0.815) and considerable for mtDNA copy number (0.524), and again exceptionally high for the rate-limiting telomerase subunit, hTERT protein level (0.946). In contrast, telomerase activity showed no co-twin similarity (ICC 0). By comparing relative amounts of hTERT protein levels in different lymphocyte subgroups of twin subjects, in Treg cells significantly higher level could be detected compared to Tly, Th or Tc cell subgroups. This is the first study that simultaneously analyzed co-twin similarity in MZ twins for the above four variables and alongside assessed their relationship, whereby positive association was found between TL and mtDNAcn. © 2017, Springer International Publishing AG, part of Springer Nature.
KW - Epigenetics
KW - hTERT
KW - Mitochondrial DNA copy number
KW - Regulatory T cells
KW - T Lymphocytes
KW - Telomerase activity
KW - Telomere length
KW - Telomere-independent functions of telomerase
KW - Twin studies
KW - mitochondrial DNA
KW - telomerase reverse transcriptase
KW - adult
KW - aged
KW - Article
KW - B lymphocyte
KW - CD3+ T lymphocyte
KW - cellular distribution
KW - co twin similarity
KW - controlled study
KW - cytotoxic T lymphocyte
KW - enzyme activity
KW - enzyme linked immunosorbent assay
KW - epigenetics
KW - female
KW - flow cytometry
KW - gene dosage
KW - genetic parameters
KW - helper cell
KW - human
KW - human cell
KW - immunophenotyping
KW - Jurkat cell line
KW - leukemia cell line
KW - male
KW - Mono-Mac-6 cell line
KW - monozygotic twins
KW - peripheral blood mononuclear cell
KW - polymerase chain reaction
KW - regulatory T lymphocyte
KW - T lymphocyte subpopulation
KW - telomere length
KW - telomeric repeat amplification protocol
U2 - 10.1007/s00018-017-2738-z
DO - 10.1007/s00018-017-2738-z
M3 - Article
SN - 1420-682X
VL - 75
SP - 2447
EP - 2456
JO - Cellular and Molecular Life Sciences
JF - Cellular and Molecular Life Sciences
IS - 13
ER -