Abstract
A regression-based fusion algorithm has been used to merge hyperspectral Fourier transform infrared (FTIR) data with an H&E image of oral squamous cell carcinoma metastases in cervical lymphoid nodal tissue. This provides insight into the success of the ratio of FTIR absorbances at 1252 cm−1 and 1285 cm−1 in discriminating between these tissue types. The success is due to absorbances at these two wavenumbers being dominated by contributions from DNA and collagen, respectively. A pixel-by-pixel fit of the fused spectra to the FTIR spectra of collagen, DNA and cytokeratin reveals the contributions of these molecules to the tissue at high spatial resolution.
Original language | English |
---|---|
Pages (from-to) | 1489 |
Number of pages | 1494 |
Journal | Analyst |
Volume | 148 |
Issue number | 17 |
DOIs | |
Publication status | Published - 2023 |