Abstract
The aim of this paper is to introduce the stochastic collocation methods in topology optimization for mechanical systems with material and geometric uncertainties. The random variations are modeled by a memory-less transformation of spatially varying Gaussian random fields which ensures their physical admissibility. The stochastic collocation method combined with the proposed material and geometry uncertainty models provides robust designs by utilizing already developed deterministic solvers. The computational cost is discussed in details and solutions to decrease it, like sparse grids and discretization refinement are proposed and demonstrated as well. The method is utilized in the design of compliant mechanisms.
Original language | English |
---|---|
Pages (from-to) | 597-612 |
Number of pages | 16 |
Journal | Structural and Multidisciplinary Optimization |
Volume | 46 |
Issue number | 4 |
DOIs | |
Publication status | Published - Oct 2012 |
Keywords
- Geometric uncertainties
- Material uncertainties
- Robust design
- Sparse grids
- Stochastic collocation
- Topology optimization