Abstract
Toxicological studies have implicated trace metals in airborne particles as possible contributors to respiratory and/or cardiovascular inflammation. As part of an epidemiological study, co-located 24 h samples of PM10, PM2.5 and black smoke (BS) were collected for 1 year at an urban background site in Edinburgh, and each sample sequentially extracted with ultra-pure water, then concentrated HNO3/HCl, and analysed for Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd and Pb. This yields a comprehensive data set for UK urban airborne trace metal. The median (n>349) daily water-soluble metal concentration in PM2.5 ranged from 0.05 ng m-3 for Ti to 5.1 ng m-3 for Pb; and in PM10 from 0.18 ng m-3 for Ti to 11.7 ng m-3 for Fe. Median daily total (i.e. water+acid-extractable) metal concentration in PM2.5 ranged from 0.3 ng m-3 for As to 27.6 ng m-3 for Fe; and in PM 10 from 0.37 ng m-3 for As to 183 ng m-3 for Fe. The PM2.5:PM10 ratio varied considerably with metal, from 70% for V, As, Cd and Pb. The 11 trace metals constituted proportionally more of the PM10-2.5 fraction than of the PM2.5 fraction (0.9%). The proportion of water-soluble metal in each size-fraction varied considerably, from 50% water-soluble V, Zn, As and Cd in PM2.5. Although Fe generally dominated the trace metal, water-soluble metal also contained significant Zn, Pb and Cu, and for all size and solubility fractions >90% of trace metal was comprised of Fe, Zn, Pb and Cu. Statistical analyses suggested three main sources: traffic; static combustion; and crustal. The association of metals with traffic (Cu, Fe, Mn, Pb, Zn) was consistent with traffic-induced non-exhaust "resuspension" rather than direct exhaust emission. Meteorology contributed to the wide variation in daily trace metal concentration. The proportion of trace metal in particles varied significantly with the air mass source and was highest on days for trajectories traversing over land. For Mn, Fe, Cu, Zn, As and Pb there was greater correlation of metal concentration with BS mass than with either PM 10 or PM2.5 mass, suggesting that BS reflectance monitoring could be a cost-effective surrogate measure of particle metal concentration in urban background air. © 2004 Elsevier Ltd. All rights reserved.
Original language | English |
---|---|
Pages (from-to) | 1417-1430 |
Number of pages | 13 |
Journal | Atmospheric Environment |
Volume | 39 |
Issue number | 8 |
DOIs | |
Publication status | Published - Mar 2005 |
Keywords
- Air mass
- Airborne particles
- Back-trajectory
- ICP-MS
- Toxicology
- Urban aerosol