Turbulent vortex flow responses at the AB interface in rotating superfluid 3He-B

P. M. Walmsley, V. B. Eltsov, P. J. Heikkinen, J. J. Hosio, R. Hänninen, M. Krusius

    Research output: Contribution to journalArticlepeer-review

    18 Downloads (Pure)


    In a rotating two-phase sample of 3He-B and magnetic-field stabilized 3He-A the large difference in mutual friction dissipation at 0.20Tc gives rise to unusual vortex flow responses. We use noninvasive NMR techniques to monitor spin down and spin up of the B-phase superfluid component to a sudden change in the rotation velocity. Compared to measurements at low field with no A phase, where these responses are laminar in cylindrically symmetric flow, spin down with vortices extending across the AB interface is found to be faster, indicating enhanced dissipation from turbulence. Spin up in turn is slower, owing to rapid annihilation of remanent vortices before the rotation increase. As confirmed by both our NMR signal analysis and vortex filament calculations, these observations are explained by the additional force acting on the B phase vortex ends at the AB interface. © 2011 American Physical Society.
    Original languageEnglish
    Article number184532
    JournalPhysical Review B - Condensed Matter and Materials Physics
    Issue number18
    Publication statusPublished - 28 Nov 2011


    Dive into the research topics of 'Turbulent vortex flow responses at the AB interface in rotating superfluid 3He-B'. Together they form a unique fingerprint.

    Cite this