Abstract
The spatial structure of neurotoxin II from the venom of the central Asian cobra Naja naja oxiana was determined by two-dimensional 1H-NMR techniques and computational analysis. Nearly complete proton resonance assignments for 61 amino acid residues have been made using two-dimensional (2D) homonuclear total correlated spectroscopy, 2D homonuclear double-quantum-filtered correlated spectroscopy and 2D homonuclear NOE spectroscopy (NOESY) experiments. The cross-peak volumes in NOESY spectra spin-spin coupling constants of vicinal protons NH-CαH and CαH-CβH and the observation of slow deuterium exchange of amide protons were used to define local structure and a set of constraints for distance geometry program DIANA. The average root-mean-square deviations are 53 pm for backbone heavy atoms and 118 pm for all heavy atoms of 19 final neurotoxin II conformations. The spatial structure is characterized by a short double-stranded (residues 1-5 and 13-17) and a triple-stranded (residues 22-30, 33-41 and 50-54) antiparallel β-sheets.
Original language | English |
---|---|
Pages (from-to) | 1213-1223 |
Number of pages | 10 |
Journal | European Journal of Biochemistry |
Volume | 213 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1993 |