Ultra-fast transfer and high storage of Li + /Na + in MnO quantum dots@carbon hetero-nanotubes: Appropriate quantum dots to improve the rate

Huanxin Li, Lanlan Jiang, Qiaoxia Feng, Zhongyuan Huang, Haihui Zhou, Yi Gong, Zhaohui Hou, Wenji Yang, Chaopeng Fu, Yafei Kuang

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Carbon materials play indispensable roles in energy-related systems, and constructing fast chargeable carbon anodes is still one of the most interesting and meaningful topics in energy storage and conversion fields. Selection of an appropriate structure and quantity of quantum dots can improve the rate performances. Here we report a unique molecular beam template approach to inlay MnO quantum dots (MnOQD) into walls of carbon hetero-nanotubes to form a brand-new composite (MnOQD@CHNTs) and investigate the influences of the inlaid quantum dots on the structures and the fast charging properties of carbon hetero-nanotubes. Plenty of tiny inlaid MnOQD in the walls of carbon nanotubes are proved to be capable of expanding the carbon layer spacing, decreasing the degree of order, forming heterojunctions with carbon, and altering the local electronic cloud density of carbon. Therefore, the capability of MnOQD@CHNTs for Li+/Na+ transfer and storage is greatly improved due to the quantum dot effect of MnO. As a result, the MnOQD@CHNTs exhibit excellent cycling and rate performances as both lithium-ion battery (LIB) and sodium-ion battery (SIB) anodes, e.g. fully charged in 28.3 s with a capacity of 392.8 mA h g-1 (~ 125.6 C) in LIB (the best ever reported).
    Original languageEnglish
    JournalEnergy Storage Materials
    Early online date25 Jul 2018
    DOIs
    Publication statusPublished - 2018

    Fingerprint

    Dive into the research topics of 'Ultra-fast transfer and high storage of Li + /Na + in MnO quantum dots@carbon hetero-nanotubes: Appropriate quantum dots to improve the rate'. Together they form a unique fingerprint.

    Cite this