Ultrasensitive Label-Free DNA Detection Based on Solution-Gated Graphene Transistors Functionalized with Carbon Quantum Dots

Minghua Deng, Jinhua Li, Bichen Xiao, Zhanpeng Ren, Ziqin Li, Haiyang Yu, Jiashen Li, Jianying Wang, Zhaowei Chen, Xianbao Wang

Research output: Contribution to journalArticlepeer-review

97 Downloads (Pure)

Abstract

Developing highly sensitive, reliable, cost-effective label-free DNA biosensors is challenging with traditional fluorescence, electrochemical, and other techniques. Most conventional methods require labeling fluorescence, enzymes, or other complex modification. Herein, we fabricate carbon quantum dot (CQD)-functionalized solution-gated graphene transistors for highly sensitive label-free DNA detection. The CQDs are immobilized on the surface of the gate electrode through mercaptoacetic acid with the thiol group. A single-stranded DNA (ssDNA) probe is immobilized on CQDs by strong π–π interactions. The ssDNA probe can hybridize with the ssDNA target and form double-stranded DNA, which led to a shift of Dirac voltage and the channel current response. The limit of detection can reach 1 aM which is 2–5 orders of magnitude lower than those of other methods reported previously. The sensor also exhibits a good linear range from 1 aM to 0.1 nM and has good specificity. It can effectively distinguish one-base mismatched target DNA. The response time is about 326 s for the 1 aM target DNA molecules. This work provides good perspectives on the applications in biosensors.
Original languageEnglish
Pages (from-to)3320-3327
Number of pages8
JournalAnalytical Chemistry
Volume94
Issue number7
DOIs
Publication statusPublished - 22 Feb 2022

Fingerprint

Dive into the research topics of 'Ultrasensitive Label-Free DNA Detection Based on Solution-Gated Graphene Transistors Functionalized with Carbon Quantum Dots'. Together they form a unique fingerprint.

Cite this