Projects per year
Abstract
This work presents a sequential Monte Carlo-based integrated gas and power flow (IGPF) model to quantify how different sources of uncertainty propagate within the integrated gas and electricity network (IGEN). The uncertain input parameters, i.e. photovoltaic and wind generation, and electricity and heat demand are represented by weekly probabilistic time-series profiles. The time-series profiles of photovoltaic and wind generation are determined using respective Markov chains, whereas the fluctuations in time-series profiles of electricity and heat demand are modelled to comply with respective Gaussian distributions. The goodness-of-fit of these probabilistic time-series profiles to respective historical datasets is evaluated using the Kolmogorov-Smirnov test. Subsequently, the operation of gas and electricity networks, coupled through power-to-gas technology, is simulated using the sequential Monte Carlo-based IGPF model. The effectiveness of proposed approach is assessed through a case study in a localised energy network. Finally, four test-cases are designed to investigate the impact of increasing renewable penetration levels on uncertainty propagation in IGEN.
Original language | English |
---|---|
Title of host publication | 16th International Conference on Probabilistic Methods Applied to Power Systems |
Publication status | Accepted/In press - 11 May 2020 |
Event | 16th International Conference on Probabilistic Methods Applied to Power Systems - Liege, Belgium Duration: 18 Aug 2020 → 21 Aug 2020 |
Conference
Conference | 16th International Conference on Probabilistic Methods Applied to Power Systems |
---|---|
Abbreviated title | PMAPS 2020 |
Country/Territory | Belgium |
City | Liege |
Period | 18/08/20 → 21/08/20 |
Fingerprint
Dive into the research topics of 'Uncertainty Propagation through Integrated Gas and Electricity Networks using Sequential Monte-Carlo'. Together they form a unique fingerprint.Projects
- 1 Finished