Unsupervised Domain Adaptation for Brain Vessel Segmentation through Transwarp Contrastive Learning

Fengming Lin, Yan Xia, Michael MacRaild, Yash Deo, Haoran Dou, Qiongyao Liu, Kun Wu, Nishant Ravikumar, Alejandro F. Frangi

Research output: Working paperPreprint

4 Downloads (Pure)

Abstract

Unsupervised domain adaptation (UDA) aims to align the labelled source distribution with the unlabelled target distribution to obtain domain-invariant predictive models. Since cross-modality medical data exhibit significant intra and inter-domain shifts and most are unlabelled, UDA is more important while challenging in medical image analysis. This paper proposes a simple yet potent contrastive learning framework for UDA to narrow the inter-domain gap between labelled source and unlabelled target distribution. Our method is validated on cerebral vessel datasets. Experimental results show that our approach can learn latent features from labelled 3DRA modality data and improve vessel segmentation performance in unlabelled MRA modality data.
Original languageEnglish
Publication statusPublished - 23 Feb 2024

Keywords

  • cs.CV
  • cs.LG

Fingerprint

Dive into the research topics of 'Unsupervised Domain Adaptation for Brain Vessel Segmentation through Transwarp Contrastive Learning'. Together they form a unique fingerprint.

Cite this