Unsupervised Standard Plane Synthesis in Population Cine MRI via Cycle-Consistent Adversarial Networks

Le Zhang*, Marco Pereañez, Christopher Bowles, Stefan K. Piechnik, Stefan Neubauer, Steffen E. Petersen, Alejandro F. Frangi

*Corresponding author for this work

Research output: Chapter in Book/Conference proceedingConference contributionpeer-review

Abstract

In clinical studies or population imaging settings, cardiac magnetic resonance (CMR) images may suffer from artifacts due to variability in the breath-hold position adopted by the patient during the scan. Consistent orientation of image planes with respect to the cardiac ventricles in CMR sequences forms a crucial step in the assessment of cardiac function via parameters such as the Ejection Fraction (EF) and Cardiac Output (CO) of both ventricles, which are the most immediate indicators of normal/abnormal cardiac function. In this paper, we present a novel unsupervised approach for the realistic transformation of acquired CMR images to a standard orientation using Cycle-Consistent Adversarial Networks (Cycle-GANs). We tackle this challenge by splitting the problem into two principal subtasks. First, we consider a bidirectional generator mapping between the re-oriented image and the original, hence allowing direct comparison to the input image without the need to resort to paired training data. Second, we devise a novel loss function incorporating intensity and orientation terms, and aims to produce images of high perceptual quality. Extensive experiments conducted on the CMR images in the UK Biobank dataset demonstrate that the images rendered by our model can improve the accuracy of the image derived cardiac parameters.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings
EditorsDinggang Shen, Pew-Thian Yap, Tianming Liu, Terry M. Peters, Ali Khan, Lawrence H. Staib, Caroline Essert, Sean Zhou
PublisherSpringer Nature
Pages660-668
Number of pages9
ISBN (Print)9783030322441
DOIs
Publication statusPublished - 2019
Event22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 - Shenzhen, China
Duration: 13 Oct 201917 Oct 2019

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11765 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
Country/TerritoryChina
CityShenzhen
Period13/10/1917/10/19

Keywords

  • Cardiac orientation
  • Cycle-Consistent Adversarial Networks
  • Deep learning
  • MRI
  • Population imaging
  • Ventricular volume

Fingerprint

Dive into the research topics of 'Unsupervised Standard Plane Synthesis in Population Cine MRI via Cycle-Consistent Adversarial Networks'. Together they form a unique fingerprint.

Cite this