TY - JOUR
T1 - Unusual solubilization capacity of hydrophobic drug olanzapine in polysorbate micelles for improved sustained drug release
AU - Singla, Pankaj
AU - Garg, Saweta
AU - Kaur, Sarbjeet
AU - Kaur, Navreet
AU - Kaur, Navalpreet
AU - Aswal, Vinod K.
AU - Velliou, Eirini
AU - Kaur, Harpreet
AU - Peeters, Marloes
AU - Kumar Mahajan, Rakesh
N1 - Publisher Copyright:
© 2022 Elsevier B.V.
PY - 2022/8/1
Y1 - 2022/8/1
N2 - Polysorbates and Pluronic polymers are straightforward to use to improve the performance of hydrophobic molecules, however, colloidal systems of these polymers are not fully understood and loading of drug molecules in these Polysorbate micelles rely on a plethora of factors. Thus, it is a laborious task to select the optimal Polysorbate as a drug delivery vehicle. To pave the way for use of Polysorbates, three Polysorbates with different hydrophobicity were selected for oral delivery of the hydrophobic drug Olanzapine (OLZ). At higher concentration, Polysorbate T20 with low hydrophobicity accommodated a higher amount of OLZ than other Polysorbates T40 and T60 with higher hydrophobicity. The effect of mixed micelles of Pluronic P84 and Polysorbate (T20, T40, T60) on solubilization of OLZ was also studied at different concentration ratios and the higher OLZ solubilization was found to be in T20:P84 mixed micelles at 3:2 %w/v concentration ratio. Stronger interactions between OLZ and T20 were noticed with isothermal titration calorimetry (ITC), resulting in the higher OLZ solubilization in these micelles. Dynamic light scattering (DLS) and small angle neutron scattering (SANS) measurements revealed that mixed micelles of Polysorbates are greater in sizes than pure polysorbate micelles and the size decreased after loading of OLZ. Furthermore, SANS measurements suggested that decrease in the aggregation number after OLZ loading promoted the loading capacity of the Polysorbate micelle. Polysorbates micelles exhibited the sustained release behavior in biological relevant media, examined with in vitro dialysis release method. Therefore, it is believed that the finding of this work could be useful in the oral delivery formulations in which Polysorbates and Pluronics are primarily used.
AB - Polysorbates and Pluronic polymers are straightforward to use to improve the performance of hydrophobic molecules, however, colloidal systems of these polymers are not fully understood and loading of drug molecules in these Polysorbate micelles rely on a plethora of factors. Thus, it is a laborious task to select the optimal Polysorbate as a drug delivery vehicle. To pave the way for use of Polysorbates, three Polysorbates with different hydrophobicity were selected for oral delivery of the hydrophobic drug Olanzapine (OLZ). At higher concentration, Polysorbate T20 with low hydrophobicity accommodated a higher amount of OLZ than other Polysorbates T40 and T60 with higher hydrophobicity. The effect of mixed micelles of Pluronic P84 and Polysorbate (T20, T40, T60) on solubilization of OLZ was also studied at different concentration ratios and the higher OLZ solubilization was found to be in T20:P84 mixed micelles at 3:2 %w/v concentration ratio. Stronger interactions between OLZ and T20 were noticed with isothermal titration calorimetry (ITC), resulting in the higher OLZ solubilization in these micelles. Dynamic light scattering (DLS) and small angle neutron scattering (SANS) measurements revealed that mixed micelles of Polysorbates are greater in sizes than pure polysorbate micelles and the size decreased after loading of OLZ. Furthermore, SANS measurements suggested that decrease in the aggregation number after OLZ loading promoted the loading capacity of the Polysorbate micelle. Polysorbates micelles exhibited the sustained release behavior in biological relevant media, examined with in vitro dialysis release method. Therefore, it is believed that the finding of this work could be useful in the oral delivery formulations in which Polysorbates and Pluronics are primarily used.
KW - Hydrophobic drug
KW - Loading capacity
KW - Olanzapine
KW - Oral delivery
KW - Polysorbates
KW - Small angle neutron scattering
UR - http://www.scopus.com/inward/record.url?scp=85129758827&partnerID=8YFLogxK
U2 - 10.1016/j.molliq.2022.119256
DO - 10.1016/j.molliq.2022.119256
M3 - Article
AN - SCOPUS:85129758827
SN - 0167-7322
VL - 359
JO - Journal of Molecular Liquids
JF - Journal of Molecular Liquids
M1 - 119256
ER -