Using VO tools to investigate distant radio starbursts hosting obscured AGN in the HDF(N) region

Anita Richards, A M S Richards, T W B Muxlow, R Beswick, M G Allen, K Benson, R C Dickson, M A Garrett, S T Garrington, E Gonzalez-Solarez, P A Harrison, A J Holloway, M M Kettenis, R A Laing, E A Richards, H Thrall, H J van Langevelde, N A Walton, P N Wilkinson, N Winstanley

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Context: A 10-arcmin region around the Hubble Deep Field (North) contains 92 radio sources brighter than 40 μJy which are well-resolved by MERLIN+VLA at 0.2arcsec-2' resolution (average size ~1"). 55 of these have Chandra X-ray counterparts in the 2-Ms CDF(N) field including at least 17 with a hard X-ray photon index and high luminosity characteristic of a type-II (obscured) AGN. More than 70% of the radio sources have been classified as starbursts or AGN using radio morphologies, spectral indices and comparisons with optical appearance and rest-frame MIR emission. On this basis, starbursts outnumber radio AGN 3:1.
    Aims: We investigate the possibility that very luminous radio and X-ray emission originates from different phenomena in the same high-redshift galaxies.
    Methods: This study extends the Virtual Observatory (VO) methods previously used to identify X-ray-selected obscured type-II AGN, to examine the relationship between radio and X-ray emission. We describe a VO cut-out server for MERLIN+VLA 1.4-GHz radio images in the HDF(N) region.
    Results: The high-redshift starbursts have typical sizes of 5-10 kpc and star formation rates of ~1000 M yr-1, an order of magnitude more extended and intense than in the local universe. There is no obvious correlation between radio and X-ray luminosities nor spectral indices at z ⪆ 1.3. About 70% of both the radio-selected AGN and the starburst samples were detected by Chandra. The X-ray luminosity indicates the presence of an AGN in at least half of the 45 cross-matched radio starbursts. Eleven of these are type-II AGN, of which 7 are at z ≥ 1.5. This distribution overlaps closely with the X-ray detected radio sources which were also detected by SCUBA. In contrast, all but one of the AGN-dominated radio sources are at z <1.5, including the 4 which are also X-ray selected type-II AGN. The stacked 1.4-GHz emission at the positions of radio-faint X-ray sources is correlated with X-ray hardness.
    Conclusions: Almost all extended radio starbursts at z > 1.3 host X-ray selected obscured AGN. The radio emission from most of these ultra-luminous objects is dominated by star formation although the highest redshift (z = 4.424) source has a substantial AGN contribution. Star-formation appears to contribute less than 1/3 of their X-ray luminosity. Our results support the inferences from SCUBA and IR data, that at z ⪆ 1.5, star formation is observably more extended and more copious, it is closely linked to AGN activity and it is triggered differently, compared with star formation at lower redshifts. Tables 1 and 2 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/472/805
    Original languageEnglish
    Pages (from-to)805-822
    Number of pages18
    JournalAstronomy & Astrophysics
    Volume472
    Issue number3
    DOIs
    Publication statusPublished - Sept 2007

    Keywords

    • astronomical data bases: miscellaneous
    • X-rays: galaxies
    • radio continuum: galaxies
    • galaxies: active
    • galaxies: starburst
    • galaxies: evolution

    Fingerprint

    Dive into the research topics of 'Using VO tools to investigate distant radio starbursts hosting obscured AGN in the HDF(N) region'. Together they form a unique fingerprint.

    Cite this