TY - JOUR
T1 - Vinculin regulates the recruitment and release of core focal adhesion proteins in a force-dependent manner
AU - Carisey, Alex
AU - Tsang, Ricky
AU - Greiner, Alexandra M.
AU - Nijenhuis, Nadja
AU - Heath, Nikki
AU - Nazgiewicz, Alicja
AU - Kemkemer, Ralf
AU - Derby, Brian
AU - Spatz, Joachim
AU - Ballestrem, Christoph
PY - 2013/2/18
Y1 - 2013/2/18
N2 - Background: Cells sense the extracellular environment using adhesion receptors (integrins) linked to the intracellular actin cytoskeleton through a complex network of regulatory proteins that, all together, form focal adhesions (FAs). The molecular basis of how these sensing units are regulated, how they are implicated in transducing mechanical stimuli, and how this leads to a spatiotemporal coordination of FAs is unclear. Results: Here we show that vinculin, through its links to the talin-integrin complex and F-actin, regulates the transmission of mechanical signals from the extracellular matrix to the actomyosin machinery. We demonstrate that the vinculin interaction with the talin-integrin complex drives the recruitment and release of core FA components. The activation state of vinculin is itself regulated by force, as underscored by our observation that vinculin localization to FAs is dependent on actomyosin contraction. Using a variety of vinculin mutants, we establish which components of the cell-matrix adhesion network are coordinated through direct and indirect associations with vinculin. Moreover, using cyclic stretching, we demonstrate that vinculin plays a key role in the transmission of extracellular mechanical stimuli leading to the reorganization of cell polarity. Of particular importance is the actin-binding tail region of vinculin, without which the cell's ability to repolarize in response to cyclic stretching is perturbed. Conclusions: Overall our data promote a model whereby vinculin controls the transmission of intracellular and extracellular mechanical cues that are important for the spatiotemporal assembly, disassembly, and reorganization of FAs to coordinate polarized cell motility. © 2013 Elsevier Ltd.
AB - Background: Cells sense the extracellular environment using adhesion receptors (integrins) linked to the intracellular actin cytoskeleton through a complex network of regulatory proteins that, all together, form focal adhesions (FAs). The molecular basis of how these sensing units are regulated, how they are implicated in transducing mechanical stimuli, and how this leads to a spatiotemporal coordination of FAs is unclear. Results: Here we show that vinculin, through its links to the talin-integrin complex and F-actin, regulates the transmission of mechanical signals from the extracellular matrix to the actomyosin machinery. We demonstrate that the vinculin interaction with the talin-integrin complex drives the recruitment and release of core FA components. The activation state of vinculin is itself regulated by force, as underscored by our observation that vinculin localization to FAs is dependent on actomyosin contraction. Using a variety of vinculin mutants, we establish which components of the cell-matrix adhesion network are coordinated through direct and indirect associations with vinculin. Moreover, using cyclic stretching, we demonstrate that vinculin plays a key role in the transmission of extracellular mechanical stimuli leading to the reorganization of cell polarity. Of particular importance is the actin-binding tail region of vinculin, without which the cell's ability to repolarize in response to cyclic stretching is perturbed. Conclusions: Overall our data promote a model whereby vinculin controls the transmission of intracellular and extracellular mechanical cues that are important for the spatiotemporal assembly, disassembly, and reorganization of FAs to coordinate polarized cell motility. © 2013 Elsevier Ltd.
U2 - 10.1016/j.cub.2013.01.009
DO - 10.1016/j.cub.2013.01.009
M3 - Article
C2 - 23375895
SN - 0960-9822
VL - 23
SP - 271
EP - 281
JO - Current Biology
JF - Current Biology
IS - 4
ER -