Abstract
The paper deals with theoretical study of non linear viscoelastic phenomena in ferrofluids placed in magnetic field. Our attention is focused on the study of nonstationary flow and Maxwell-like relaxation of the macroscopical viscous stress after alternation of the shear rate. We propose that these phenomena can be explained by finite rate of evolution of chainlike aggregates, consisting of the ferrofluid particles. Statistical model of the chains growth-disintegration is suggested. In this model the chain-single particle mechanism of the chains evolution is considered, the effects of the chain-chain interaction are ignored. The proposed model allows us to estimate the time-dependent function of distribution over number of particles in the chain. Having determined this function and using methods of hydromechanics of ferrofluids with chainlike aggregates, we have studied evolution of the ferrofluid viscosity after stepwise alternation of the fluid shear rate. The estimated time of relaxation is in a reasonable agreement with experimental results. Thus, our analysis shows that the observed macroscopical viscoelastic phenomena in ferrofluids can be provided by evolution of the chain ensemble.
Original language | English |
---|---|
Journal | Physical review. E, Statistical, nonlinear, and soft matter physics |
Volume | 82 |
Issue number | 5 Pt 1 |
DOIs | |
Publication status | Published - Nov 2010 |