Abstract
A total ozone depletion of 68±7 Dobson units between 380 and 525 K from 10 December 2002 to 10 March 2003 is derived from ozone sonde data by the vortex-average method, taking into account both diabatic descent of the air masses and transport of air into the vortex. When the vortex is divided into three equal-area regions, the results are 85±9 DU for the collar region (closest to the edge), 52±5 DU for the vortex centre and 68±7 DU for the middle region in between centre and collar. Our result s compare well with other studies: We find good agreement with ozone loss deduced from SAOZ data, with results inferred from POAM III observations and with results from tracer-tracer correlations using HF as the long-lived tracer. We find a higher ozone loss than that deduced by tracer-tracer correlations using CH4. We have made a carefu l comparison with Match results: The results were recalculated using a common time period, vortex edge definition and height interval. The two methods generally compare very well, except at the 475 K level which exhibits an unexplained discrepancy. European Geosciences Union © 2005 Author(s). This work is licensed under a Creative Commons License.
Original language | English |
---|---|
Pages (from-to) | 131-138 |
Number of pages | 7 |
Journal | Atmospheric Chemistry and Physics |
Volume | 5 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2005 |