Whisker vibration information carried by rat barrel cortex neurons

Ehsan Arabzadeh, Stefano Panzeri, Mathew E. Diamond

    Research output: Contribution to journalArticlepeer-review


    Rats can make extremely fine texture discriminations by "whisking" their vibrissa across the surface of an object. We have investigated one hypothesis for the neuronal basis of texture representation by measuring how clusters of neurons in the barrel cortex of anesthetized rats encode the kinetic features of sinusoidal whisker vibrations. Mutual information analyses of spike counts led to a number of findings. Information about vibration kinetics became available as early as 6 msec after stimulus onset and reached a peak at ∼20-30 msec. Vibration speed, proportional to the product of vibration amplitude (A) and frequency (f), was the kinetic property most reliably reported by cortical neurons. Indeed, by measuring information when the complete stimulus set was collapsed into feature-defined groups, we found that neurons reduced the dimensionality of the stimulus from two features (A, f) to a single feature, the product Af. Moreover, because different neurons encode stimuli in the same manner, information loss was negligible even when the activity of separate neuronal clusters was pooled. This suggests a decoding scheme whereby target neurons could capture all available information simply by summating the signals from separate barrel cortex neurons. These results indicate that neuronal population activity provides sufficient information to allow nearly perfect discrimination of two vibrations, based on their deflection speeds, within a time scale comparable with that of a single whisking motion across a surface.
    Original languageEnglish
    Pages (from-to)6011-6020
    Number of pages9
    JournalJournal of Neuroscience
    Issue number26
    Publication statusPublished - 30 Jun 2004


    • Barrel
    • Coding
    • Cortex
    • Information
    • Texture
    • Vibrissa


    Dive into the research topics of 'Whisker vibration information carried by rat barrel cortex neurons'. Together they form a unique fingerprint.

    Cite this