Widespread release of old carbon across the Siberian Arctic echoed by its large rivers

Ö Gustafsson, B. E. Van Dongen, J. E. Vonk, O. V. Dudarev, I. P. Semiletov

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Over decadal-centennial timescales, only a few mechanisms in the carbon-climate system could cause a massive net redistribution of carbon from land and ocean systems to the atmosphere in response to climate warming. The largest such climate-vulnerable carbon pool is the old organic carbon (OC) stored in Arctic permafrost (perennially frozen) soils. Climate warming, both predicted and now observed to be the strongest globally in the Eurasian Arctic and Alaska, causes thaw-release of old permafrost carbon from local tundra sites. However, a central challenge for the assessment of the general vulnerability of this old OC pool is to deduce any signal integrating its release over larger scales. Here we examine radiocarbon measurements of molecular soil markers exported by the five Great Russian-Arctic Rivers (Ob, Yenisey, Lena, Indigirka and Kolyma), employed as natural integrators of carbon release processes in their watersheds. The signals held in estuarine surface sediments revealed that average radiocarbon ages of ii-alkanes increased east-to-west from 6400 yr BP in Kolyma to 11 400 yr BP in Ob. This is consistent with westwards trends of both warmer climate and more degraded organic matter as indicated by the ratio of high molecular weight (HMW) n-alkanoic acids to HMW n-alkanes. The dynamics of Siberian permafrost can thus be probed via the molecular-radiocarbon signal as carried by Arctic rivers. Old permafrost carbon is at present vulnerable to mobilization over continental scales. Climate-induced changes in the radiocarbon fingerprint of released permafrost carbon will likely depend on changes in both permafrost coverage and Arctic soil hydraulics. © 2011 Author(s).
    Original languageEnglish
    Pages (from-to)1737-1743
    Number of pages6
    JournalBiogeosciences
    Volume8
    Issue number6
    DOIs
    Publication statusPublished - 2011

    Fingerprint

    Dive into the research topics of 'Widespread release of old carbon across the Siberian Arctic echoed by its large rivers'. Together they form a unique fingerprint.

    Cite this