TY - JOUR
T1 - Zero carbon transitions
T2 - a systematic review of the research landscape and climate mitigation potential
AU - Shaw, Alexander
AU - Mander, Sarah
AU - Parkes, Ben
AU - Wood, Ruth
N1 - Publisher Copyright:
Copyright © 2023 Shaw, Mander, Parkes and Wood.
PY - 2023
Y1 - 2023
N2 - Academia has a crucial role to play in informing urgently needed actions on climate mitigation. It is vital to understand what is known about the potential contribution of climate mitigation options, the barriers that exist to achieving that contribution, and to quantify the research balance and geographic focus of these various approaches across the literature. This PRISMA-based systematic literature review aims to provide the reader with the following: Firstly, an overview of the post-Paris climate mitigation research landscape and secondly, an assessment of the climate mitigation potential of those options per the literature reviewed. Analysis of the research landscape demonstrated that supply-side research greatly outnumbers that on the demand-side, which totalled just half of that which focused on the supply-side. In terms of the geographic scale, the reviewed literature was dominated by national-level studies, with sub-national studies the least common, particularly those at a local government level. Given this, it can be concluded that two key areas would benefit from further research–that focusing on demand-side mitigation, and that carrying research out at more local levels. On climate mitigation potential, wind and solar energy were found to be the biggest contributors to a decarbonised energy supply, across a range of study areas. Discrepancies were identified between findings in the academic and grey literature for several options, chiefly bioenergy and nuclear power: bioenergy made significantly higher contributions in the academic literature versus grey literature, with the opposite true for nuclear. Demand-side options all demonstrated significant mitigation potential in the literature reviewed but received very limited coverage in comparison to many of their supply-side counterparts. Future research should pursue this knowledge gap to reach a better understanding of the contributions they can make and ensure that policymakers have the data necessary to chart a course to a zero-carbon future.
AB - Academia has a crucial role to play in informing urgently needed actions on climate mitigation. It is vital to understand what is known about the potential contribution of climate mitigation options, the barriers that exist to achieving that contribution, and to quantify the research balance and geographic focus of these various approaches across the literature. This PRISMA-based systematic literature review aims to provide the reader with the following: Firstly, an overview of the post-Paris climate mitigation research landscape and secondly, an assessment of the climate mitigation potential of those options per the literature reviewed. Analysis of the research landscape demonstrated that supply-side research greatly outnumbers that on the demand-side, which totalled just half of that which focused on the supply-side. In terms of the geographic scale, the reviewed literature was dominated by national-level studies, with sub-national studies the least common, particularly those at a local government level. Given this, it can be concluded that two key areas would benefit from further research–that focusing on demand-side mitigation, and that carrying research out at more local levels. On climate mitigation potential, wind and solar energy were found to be the biggest contributors to a decarbonised energy supply, across a range of study areas. Discrepancies were identified between findings in the academic and grey literature for several options, chiefly bioenergy and nuclear power: bioenergy made significantly higher contributions in the academic literature versus grey literature, with the opposite true for nuclear. Demand-side options all demonstrated significant mitigation potential in the literature reviewed but received very limited coverage in comparison to many of their supply-side counterparts. Future research should pursue this knowledge gap to reach a better understanding of the contributions they can make and ensure that policymakers have the data necessary to chart a course to a zero-carbon future.
KW - climate change
KW - climate mitigation
KW - net-zero
KW - pathways
KW - scenarios
KW - systematic review
KW - transitions
KW - zero carbon
UR - http://www.scopus.com/inward/record.url?scp=85173559464&partnerID=8YFLogxK
U2 - 10.3389/fenrg.2023.1268270
DO - 10.3389/fenrg.2023.1268270
M3 - Review article
AN - SCOPUS:85173559464
SN - 2296-598X
VL - 11
JO - Frontiers in Energy Research
JF - Frontiers in Energy Research
M1 - 1268270
ER -