Zeros of quadratic Dirichlet L-functions in the hyperelliptic ensemble

Hung Bui, Alexandra Florea

    Research output: Contribution to journalArticlepeer-review

    Abstract

    We study the 1-level density and the pair correlation of zeros of quadratic Dirichlet L-functions in function fields, as we average over the ensemble H 2g+1 of monic, square-free polynomials with coefficients in F q[x]. In the case of the 1-level density, when the Fourier transform of the test function is supported in the restricted interval (1/3, 1), we compute a secondary term of 3 size q −4g/3/g, which is not predicted by the Ratios Conjecture. Moreover, when the support is even more restricted, we obtain several lower order terms. For example, if the Fourier transform is supported in (1/3, 1/2), we identify another 2 lower order term of size q −8g/5/g. We also compute the pair correlation, and as for the 1-level density, we detect lower order terms under certain restrictions; for example, we see a term of size q −g/g 2 when the Fourier transform is supported in (14, 1). The 1-level density and the pair correlation allow us 2 to obtain non-vanishing results for L(1/2, χD), as well as lower bounds for the proportion of simple zeros of this family of L-functions.

    Original languageEnglish
    Pages (from-to)8013-8045
    Number of pages33
    JournalTransactions of the American Mathematical Society
    Volume370
    Issue number11
    Early online date7 Jun 2018
    DOIs
    Publication statusPublished - Nov 2018

    Fingerprint

    Dive into the research topics of 'Zeros of quadratic Dirichlet L-functions in the hyperelliptic ensemble'. Together they form a unique fingerprint.

    Cite this