Bioprocess Intensification of Surfactin Production

  • Candice Kaisermann

Student thesis: Phd


Biosurfactants are naturally occurring surface active compounds with unique properties such as biodegradability, low toxicity and tolerance to extreme conditions. These unique properties promote their use as alternatives to traditional petrochemical and oleochemical surfactants, as they satisfy requirements for environmentally friendly manufacturing processes. However, the cost of biosurfactants is still significantly higher than chemical surfactants which hinders their large-scale commercialisation. This work presents an investigation into the production of surfactin, a lipopeptide biosurfactant, exploiting its foamability characteristics for the design and implementation of a recirculating continuous foam fractionation column operated in parallel with a bioreactor. Surfactin is a powerful amphiphilic compound produced by Bacillus subtilis. It is a plant-elicitor with antimicrobial properties offering a huge potential in the food and agricultural industries. However, surfactin has extreme foamability even at low concentrations. This foamability can lead to production problems such as large volumes of uncontrolled overflowing foam with significant product and biomass losses. Here, it is demonstrated that this overflow can be controlled, or eliminated, by integrating a foam fractionation system to the bioreactor in a recirculating loop. A dual production and separation process was engineered and enabled reaching high surfactin productivity in a controlled manner. After elucidating the surface properties of surfactin-rich broth, a foam fractionation column was designed for bench-scale production. Operation of the recirculating column in parallel with the bioreactor enabled air flow to be independently controlled for each unit. Surfactin solutions of various concentrations were tested to relate foamability to concentration over a range of bubble sizes. The sintered glass pore size was revealed to be the main factor influencing the enrichment, with a positive correlation with increasing pore size. Characterisation of the fermentation production rate enabled fractionation column air flow rate to be controlled to ensure sufficient foam surface area for product adsorption. The airflow rate was identified as the main factor impacting on the surfactin recovery rate. This characterisation enabled broth feed flow rate to be controlled to balance the removal rate with the production rate. Two processes were created coupling the newly designed fractionation column with the bioreactor operated either in aerated or non-aerated conditions. Under aerated settings, controlled surfactin production was successfully achieved at a productivity of 0.0019 g L-1 h-1 whilst simultaneously recovering 91% of the product at a maximum enrichment of 79 and 116 through the column and overflow routes, respectively. Under non-aerated settings, overflowing foam was fully avoided and 90% of the product was recovered solely through the fractionation column at an enrichment ratio of 40 under non-optimised settings. Additionally, up to 14% (g/g) increase in surfactin production was observed with the coupling of the fractionation column demonstrating a further benefit as a bioprocess intensifying device for surfactin production. This work provides a benchmark for a robust system for surfactin production, substantially improving the productivity at bench scale, potentially leading the way to more productive and less costly industrial processes for surface active compounds in a wide range of industrials fields.
Date of Award31 Dec 2017
Original languageEnglish
Awarding Institution
  • The University of Manchester
SupervisorJames Winterburn (Supervisor) & Peter Martin (Supervisor)


  • surfactin
  • lipopeptide
  • biosurfactant
  • foam fractionation
  • separation
  • in situ product recovery
  • process intensification.

Cite this