Damage Tolerance Study of Carbon Fibre/RTM6 Composites Toughened with Thermoplastic-coated Fabric Reinforcement

  • Zijie Wu

Student thesis: Phd


RTM6 has for more than 20 years been the main commercial epoxy system for infusion processing qualified by the aerospace industry. In common with other aerospace-grade epoxy systems RTM6 is mechanically strong but brittle, producing carbon-fibre (CF) composites with relatively low impact resistance and damage tolerance. This thesis reports an approach to toughening epoxy-CF composites without modification of the resin. Thus, a T300 carbon fabric (ES-fabric) coated with 20 weight % of a poly (aryl ether ketone) (PAEK) was used to toughen the composite. The initial stage of the study was the manufacturing process. DSC and oscillatory-shear rheology were used to determine flow times and cure conditions, and to produce laminates with fibre volume fractions greater than or equal to55% a hybrid resin infusion/hot-press process was developed. Dynamic mechanical thermal analysis also showed that the PAEK coating produced relatively little plasticization of the epoxy matrix, with values of the matrix glass transition temperature shifting from 186±4.4 to 181± 1.4 ºC when using the ES-fabric. The main body of the study focussed on the toughening effect afforded by the PAEK coating relative to an uncoated fabric system as a reference. Mode I and Mode II interlaminar fracture toughness behaviour were studied using dual cantilever beam (DCB) and four-point end-notch flexure (4ENF) tests, respectively. The measured mode-I fracture energy, GIC, increased three-fold, from 216 ± 7.2 Jm-2 to 751 ± 105 Jm-2, due to the toughening effect of the PAEK coating; whereas the mode-II fracture energy, GIIC, increased almost four-fold from 857 ± 99 Jm-2 to 3316 ± 372 Jm-2. Damage resistance was studied using low-velocity impact testing and damage tolerance using a miniature compression-after-impact (CAI). A comparative study of damage tolerance was performed using open-hole compression (OHC) testing. The impact damage resistance significantly improved with the use of the PAEK-coated ES-fabric as well as the CAI and OHC behaviour. Impact testing showed the PAEK -toughened system exhibited higher energy abortion than the untoughened system, larger damage area was created in the T300/RTM6-2 after impacted with same energy. The CAI results indicated that the normalized CAI strength is major related that damage width rather than other factor. OHC results are predicted by using W-N criteria, for ES/RTM6-2: ASC a0 = 9.35 mm and PSC d0 = 2.72mm; whereas for T300/RTM6-2: ASC a0 = 7.95 mm and PSC d0 =2.43 mm, indicates that the compressive strength of T300/RTM6-2 is more sensitive to the size of the hole, thus ES/RTM6-2 perform better damage tolerance. The results from mechanical testing indicate that the PAEK coating toughened the composite system and significantly improved damage tolerance. Scanning electron microscopy indicated that these improvements in fracture behaviour were due to morphological changes induced by the PAEK coating in the matrix-CF interfacial region, where such changes can provide the maximum benefit. Small particles of RTM (approximately 1 µm in diameter) were observed imbedded within a continuous PAEK phase. Thus, during testing crack propagation was deflected (or bifurcated) by the RTM6 particles or stopped by shearing of the continuous PAEK phase of this multiphase region. This morphology is proposed to have formed in the interfacial region during processing by dissolution of the PAEK coating within the matrix resin system, followed by reaction-induced phase separation and then phase-inversion as the matrix cures.
Date of Award1 Aug 2016
Original languageEnglish
Awarding Institution
  • The University of Manchester
SupervisorArthur Wilkinson (Supervisor) & Venkata Potluri (Supervisor)


  • Epoxy
  • Aerospace
  • PAEK
  • RTM6
  • Damage Tolerance
  • Carbon Fibre
  • Composites
  • Toughened

Cite this