Effect of Arginine Glutamate on Protein Aggregation in Biopharmaceutical Formulation

  • Priscilla Kheddo

Student thesis: Phd


Monoclonal antibodies (mAbs) represent one of the fastest growing classes of therapeutic proteins. This success is due to a number of attractive properties such as high binding affinity, specificity, low immunogenicity and high aqueous solubility. Despite this, mAbs can suffer from undesirable physical instabilities, especially reversible self-association (RSA), which can lead to aggregation and phase separation. One aspect of formulation is therefore to find solution conditions which minimise mAb aggregation propensity during storage at high concentrations. Hence, the buffer, excipient and pH must be carefully considered to obtain the optimal formulation. Currently, if a platform formulation process is non-ideal for a particular candidate mAb, then an alternative strategy is to utilise high-throughput screening to measure various physical parameters indicative of physical stability. Arginine (in the form of hydrochloride salt Arg·HCl) is often used in formulations exhibiting high RSA and a propensity for aggregation. The interaction of Arg with the protein surface is complex and dependent on both the salt form and concentration. Here the focus was on the glutamate salt of arginine (Arg·Glu), to quantify its effect on mAb conformational and colloidal stability under different pH conditions. Arg·Glu was able to decrease the propensity of the mAbs to aggregate, particularly at pH values closer to their pI.The work also included the use of in vitro cell culture models to examine cell viability in the presence of the various arginine salts over a range of osmolalities. Whilst Arg·Glu is composed of two naturally occurring amino acids and both of which are considered non-toxic individually, the effect of the increased concentrations of their combination, on cells has not been explored previously. In vitro cell lines were chosen to represent the subcutaneous tissue, the effect of Arg·Glu on cell viability was compared against NaCl, Arg·HCl and sodium glutamate (NaGlu). The work concluded there was no additional toxicity associated with the presence of Arg·Glu in the cell culture models studied, therefore Arg·Glu has the potential as an excipient as it reduces aggregation and is nontoxic.Another aspect of the work was to assess the use of solution NMR spectroscopy as an orthogonal technique in mAb formulation characterisation. 1H NMR spectroscopy was used to measure a number of experimental parameters for high concentration mAb solution. The work proposed that 1H NMR spectroscopy can serve as a valuable orthogonal method for mAb characterization and formulation.
Date of Award1 Aug 2017
Original languageEnglish
Awarding Institution
  • The University of Manchester
SupervisorAlexander Golovanov (Supervisor), Stephen Prince (Supervisor) & Rebecca Dearman (Supervisor)


  • Formulation
  • Excipient
  • Monoclonal antibodies
  • Protein aggregation
  • Arginine Glutamate

Cite this