Exploiting Graphene as a Therapeutics Platform in Biological Systems

  • Catriona Mccallion

Student thesis: Phd


Since its isolation in 2004, the research landscape around graphene and other 2D materials has expanded rapidly and now encompasses fields as diverse as electronic engineering and drug delivery. For biomedical applications, one of the most desirable properties of the graphene family of nanomaterials (GFNs) is their 2D geometry; the high surface area to volume ratio that is characteristic of nanomaterials is taken to its extreme in a material that can be viewed as being entirely surface. This particular property alongside the versatility with which they may be functionalised both makes GFNs well positioned to function as the foundation of highly tailored and multifunctional therapeutics platforms. In this project, two GFN types, namely pristine graphene and graphene oxide, were prepared to form suspensions suitable for application to therapeutics delivery. Firstly, experiments using four essential amino acids with pristine graphitic material were undertaken to assess whether graphene flakes could be suitably exfoliated and suspended using sonication in the presence of aqueous solutions of these biocompatible molecules. A positive correlation was found between the hydrophobicity of the amino acid and the presence of one or more aromatic rings in the amino acid, and the efficacy of exfoliation both in terms of concentration achieved in suspension and flake thinness. However, the system itself was found to be highly complex, both with regards to the sonication used to exfoliate the graphitic flakes, and the interactions between the amino acids and the flakes. These considerations limited the wider applicability of this form of graphene preparation for therapeutics delivery applications. Secondly, work was performed on graphene oxide (GO), a GFN far more studied in the literature, but notoriously heterogeneous. Therefore much of the work completed focused on its characterisation. A combination of established and novel fluorescence-based characterisation methods were used to fully characterise three preparations of GO, before preliminary experiments were undertaken to test their interactions with cell components. The work showed that the inherent fluorescence of GO can be exploited to improve suspension characterisation; raster image correlation spectroscopy (RICS) was used to measure the apparent hydrodynamic radii of the flakes and flow cytometry was used to provide insight into the interactions between GO flakes and serum components. Preliminary cellular experiments confirmed that flow cytometry could be also employed to assess particular graphene characteristics in the context of cell culture, demonstrating the relatively low toxicity of PEGylated GO compared to unfunctionalised GO. Finally, as the therapeutics target for this project was leukaemia, a targeting ligand was designed and synthesised that could bind to CXCR4 - a receptor that is overexpressed on CLL B-cells, as well as many other cancer types. The ligand was synthesised such that it could easily be attached to GO, however its molecular structure is flexible enough that it can be attached to a number of different therapeutics materials. It was confirmed using both competition and functional assays that the molecule was antagonistic, and was able to deliver a conjugated fluorescent molecule specifically to the CXCR4 receptors on primary CLL B-cells. The work presented in this thesis illustrates the complexity that affects the use of GFNs in biomedicine, but also confirms the potential for their future development. The field is still young, and therapeutics delivery is likely to benefit from advances in the preparation of pristine graphene, and from methods to minimise the heterogeneity of GO. These steps will support a route towards clinical application. In addition, as the field of 2D materials expands, other materials with enviable surface area to volume ratios may come to the fore. Furthermore, this thesis has shown the value of exploring novel approaches to the ch
Date of Award1 Aug 2017
Original languageEnglish
Awarding Institution
  • The University of Manchester
SupervisorAlain Pluen (Supervisor), John Burthem (Supervisor), Alexander Golovanov (Supervisor) & Richard Byers (Supervisor)


  • Graphene Oxide
  • Drug Delivery
  • Leukaemia
  • Graphene

Cite this