Fate of Uranium and Neptunium during Fe(II)/Fe(III) (oxyhydr)oxide formation

  • Hannah Roberts

Student thesis: Phd


The current proposed method for the long-term management of intermediate and high level radioactive waste in the UK is via geological disposal. It is known that redox sensitive elements such as uranium and neptunium will significantly contribute to the total waste inventory. Recently, studies have indicated that both U and Np can be stabilised by interaction with minerals. Over long periods of time (1000’s -10,000’s years) steel canisters that encase radioactive waste in geodisposal systems will undergo anaerobic corrosion, potentially leading to the release of radionuclides, including U and Np. Anaerobic corrosion will also result in the formation of a number of oxide phases, including iron (oxyhydr)oxides e.g. magnetite and green rust. The interaction of U and Np with such forming iron (oxyhydr)oxides may lead to the sequestering of radionuclides in the environment through a range of processes such as adsorption to a mineral surface and incorporation into a mineral structure. Therefore the interactions between iron (oxyhydr)oxides and radionuclides are important to determine their fate if potentially released within the wider environment. In this study, the fate of U(VI) and Np(V) when in contact with a range of iron (oxyhydr)oxides was considered. These systems were selected to help understand the detailed mechanisms that may occur between radionuclides and iron (oxyhydr)oxides. XRD and TEM were used to characterise mineralogy, whilst acid digestions determined the distribution of U within the mineral phase. Synchrotron based XAS was used to determine oxidation state, site geometry and local bonding environment of the radionuclides associated with the mineral phases. The data suggests that: U(V) is stabilised and incorporated in octahedral coordination into both the magnetite and green rust structure in a uranate-like coordination; with increasing U concentration mineral formation favours uraninite and Fe(III) (oxyhydr)oxides; the limit of U incorporation into magnetite is 0.45 mol % U ± 0.23; Np(V) is reduced to Np(IV) on the iron (oxyhydr)oxide surface forming a bidentate binuclear complex; and that upon reoxidation, Np(IV) is partially reoxidised back to Np(V) but not released back into solution. These results highlight the significance in understanding the mechanisms when both Np and U are in contact with iron (oxyhydr)oxides which can contribute towards site environmental clean-up and waste management in the nuclear industry.
Date of Award1 Aug 2018
Original languageEnglish
Awarding Institution
  • The University of Manchester
SupervisorSamuel Shaw (Supervisor), Francis Livens (Supervisor), Katherine Morris (Supervisor) & Gareth Law (Supervisor)


  • iron (oxyhydr)oxide
  • incorporation
  • x-ray diffraction
  • x-ray absorption spectroscopy
  • magnetite
  • uranium
  • green rust
  • neptunium

Cite this