Improving the Performance of Minimum Quantity Lubrication in High Speed Milling and Environmental Performance Analysis

  • Ismet Mulyadi

Student thesis: Phd


Manufacturing by mechanical machining has historically benefited from the use of cutting fluid. Cutting fluids help to reduce temperature, friction, flush away chips, and hence prolong tool life and improve machining performance. However, uncontrolled use of cutting fluid raises concern in respect of cost and environmental burden. For these reasons, dry machining is used in conjunction with high speed machining to reduce cycle times and simultaneously deliver a greener process. However, for some workpiece materials full implementation of dry machining is not economically viable due to the absence of the essential cooling and lubricating functions delivered by cutting fluids. The most feasible bridging technology is minimum quantity lubrication (MQL) where a very small flow rate of coolant/lubricant is delivered to the cutting zones. In terms of machinability, the application of MQL is promising. However, most studies conducted on MQL focused on the feasibility of MQL application and show-casing the technical benefits. No studies had been identified in literature systematically investigating the relationship between cutting conditions and MQL with the goal of optimising the process. Moreover, the presumed environmental benefits of MQL have not been systematically assessed because Life Cycle Analysis (LCA) derived evaluation models do not explicitly model the impact of machining conditions such as feedrates, cutting velocities and depth of cut.The motivation for this PhD work was to select the optimum machining process variables for maximising effectiveness of MQL, to explore process improvements and to assess the environmental credentials of the process in relation to other forms of cutting environments. In this work, high speed, end milling tests on tool steel were undertaken and 1) Taguchi methods were used to optimise the process, 2) the sensitivity of tool wear to nozzle position was evaluated and 3) the environmental burden of dry, MQL and flood coolants were evaluated based on direct energy needs and process outputs. A fluid soaking device was used to assess the amount of fluid collected or presumed to be delivered to the cutting zone for different nozzle orientations.The Taguchi process optimisation suggested that in HSM the size effect, brought about by a low chip thickness, should be considered in the search for an optimum process window for HSM. A significant and novel finding of this PhD was the dominance of MQL nozzle positioning. The study clearly showed that when machining hardened steel at a high cutting speed and RPM the tool life could be significantly increased by 50% by adjusting the position of the nozzle toward the rake face in relation to the end-milled face. The work opens up new science and provides recommendations as to where to align the nozzle when end milling tool steel at high cutting speeds. The fluid trapping and the blade-wiping angle are key parameters that influenced the effective delivery of MQL when high spindle revolutions per minute are used. These results from the fluid soaking device were found to correlate strongly with observed machining performance evaluations.In terms of modelling, the PhD developed an improved and more generic direct energy model that can be used to determine the environmental burden for direct electrical energy requirements and the energy embodied in other process material outputs. This model addresses the system boundary and activity that within the control of the manufacturing plant. The model was used to evaluate the environmental performance of dry, flood and MQL fluids. The impact of these results and models in optimising environmental performance was also illustrated.The work in this PhD is important to industry in that it contributes to the optimisation of MQL and gives an assessment of the environmental impact. The PhD developed new and significantly important machining science in the positioning of nozzles in MQL machining at higher speeds.
Date of Award31 Dec 2013
Original languageEnglish
Awarding Institution
  • The University of Manchester
SupervisorPaul Mativenga (Supervisor)


  • minimum quantity lubrication, high speed machining, process improvement

Cite this