In-situ X-ray Computed Tomography Tests and Numerical Modelling of Ultra High Performance Fibre Reinforced Concrete

  • Ansam Qsymah

Student thesis: Phd

Abstract

Ultra high performance fibre reinforced concrete (UHPFRC) is a relatively new fibre reinforced cementitious composite and has become very popular in construction applications. Extensive experimental studies have been conducted, demonstrating its superior properties such as much higher strength, ductility and durability than conventional fibre reinforced concrete (FRC) and high performance concrete. However, the material's damage and fracture mechanisms at meso/micro scales are not well understood, limiting its wider applications considerably. This study aims at an in-depth understanding of the damage and fracture mechanisms of UHPFRC, combining microscale in-situ X-ray computed tomography (µXCT) experiments and mesoscale image-based numerical modelling. Firstly, in-situ µXCT tests of small-sized UHPFRC specimens under wedge splitting loading were carried out, probably for the first time in the world, using an in-house designed loading rig. With a voxel resolution of 16.9µm, the complicated fracture mechanisms are clearly visualised and characterised using both 2D images and 3D volumes at progressive loading stages, such as initiating of micro-cracks, arresting of cracks by fibres, bending and pulling out of fibres and spalling of mortar at the exit points of inclined fibres.Secondly, based on the statistics of pores in the µXCT images obtained for a 20mm cube specimen, an efficient two-scale analytical-numerical homogenisation method was developed to predict the effective elastic properties of the UHPFRC. The large number of small pores were first homogenised at microscale with sand and cement paste, using elastic moduli from micro-indentation tests. 3D mesoscale finite element models were built at the second scale by direct conversion of the µXCT images, with fibres and large pores were faithfully represented. The effects of the volume fraction and the orientation of steel fibres on the elastic modulus were investigated, indicating that this method can be used to optimise the material micro-structure.Thirdly, 3D mesoscale finite element models were built for the specimen used in the in-situ µXCT wedge splitting test, with embedded fibre elements directly converted from the µXCT images. The fracture behaviour in the mortar was simulated by the damage plasticity model available in ABAQUS. Finally, 2D mesoscale finite element models were developed to simulate the fracture behaviour of UHPFRC using cohesive interface elements to simulate cracks in the mortar, and randomly distributed two-noded 1D fibres and connector elements to simulate the pull-out behaviour of fibres. This approach offers a link between the fibres pull-out behaviour and the response of the whole composite at the macroscale, thus it can be used to conduct parametric studies to optimise the material properties.
Date of Award31 Dec 2016
Original languageEnglish
Awarding Institution
  • The University of Manchester
SupervisorLee Margetts (Supervisor) & Zhenjun Yang (Supervisor)

Keywords

  • micro-indentation
  • wedge splitting test
  • concrete damage plasticity
  • cohesive elements
  • In-situ test
  • crack characterisation
  • mesoscale modelling
  • computed microtomography
  • image processing
  • UHPFRC

Cite this

'